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Abstract
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1. Introduction

In this paper we discuss how the Hausdorff dimension of sets in higher dimensional
Heisenberg groups equipped with a non-Euclidean metric of sub-Riemannian type behaves
under projections onto horizontal and complementary vertical subgroups, and under slicing
by translates of vertical subgroups. Our results contribute to the ongoing study of the internal
metric and measure-theoretic structure of sub-Riemannian spaces. Such a program was originally
formulated in Gromov’s groundbreaking treatise [10].

Our studies are motivated by the intention to find Heisenberg counterparts of classical
almost sure statements in geometric measure theory. In the Euclidean space Rn such results
are formulated in terms of a natural measure γn,m on the Grassmannian G(n, m) of all
m-dimensional linear subspaces of Rn for integers 0 < m < n.

Denote by πV : Rn
→ V the Euclidean orthogonal projection from Rn onto a subspace

V ∈ G(n, m) and let A ⊂ Rn be a Borel set. It was proved by Marstrand [14] (for the case
n = 2) and by Mattila [15] that

dimE πV (A) = min{dimE A, m} for γn,m almost every V . (1.1)

Moreover, the Hausdorff m-dimensional measure Hm
E (πV (A)) is positive for γn,m almost every

V ∈ G(n, m) if dimE A > m.
Closely related to the preceding statements are results estimating the Hausdorff dimension of

the intersection of A with translates of the orthocomplement V⊥ of V . If t = dimE A > m, it
follows from the projection theorem that there exists an Hm positive measure set of parameters
u ∈ V such that A ∩ V⊥u ≠ ∅, where V⊥u = π−1

V {u} = V⊥ + u. Yet more can be said about the
dimension of these intersections. In [14] and [15] one finds the estimate

Hm
E ({u ∈ V : dimE (A ∩ V⊥u ) = t − m}) > 0 for γn,n−m a.e. V⊥ ∈ G(n, n − m).

As mentioned above, our goal in this paper is to establish analogous results in the sub-
Riemannian Heisenberg group. Let us recall that the Heisenberg group Hn is the unique
simply connected, connected nilpotent Lie group of step two and dimension 2n + 1 with one-
dimensional center. As a manifold, we may identify Hn with R2n+1. Points p ∈ Hn are written
in coordinates as

p = (x, y, t) ∈ Rn
× Rn

× R.

Denoting z = (x, y) = (x1, . . . , xn, y1, . . . , yn), the group law is given by

p ∗ p′ = (z, t) ∗ (z′, t ′) = (z + z′, t + t ′ + 2ω(z, z′))

with the standard symplectic form ω(z, z′) =
n

i=1 yi x ′i − y′i xi .
In this paper, we give almost sure estimates for the Hausdorff dimension of subsets of Hn with

respect to the Heisenberg metric (or Korányi metric)

dH (p, p′) := ∥p−1
∗ p′∥H with ∥p∥H = (|z|4 + t2)1/4, (1.2)

where | · | denotes the usual Euclidean norm on R2n . Although the metric dH induces the
Euclidean topology, the properties of the metric space (Hn, dH ) are substantially different from
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those of the underlying Euclidean space. For instance, the Hausdorff dimension of (Hn, dH )

is 2n + 2. It will thus be important to specify the metric with which we are working. We will
indicate by a subscript H concepts with respect to the Heisenberg metric, and by a subscript E the
corresponding concepts with respect to the Euclidean metric. Thus we denote by Hs

H , resp. Hs
E ,

the Hausdorff measures and by dimH , resp. dimE , the respective Hausdorff dimensions. For sets
where the metrics dH and dE coincide, we will omit the subscript. We take this opportunity to
alert the reader that we will denote by B(x, r) the closed ball with center x and radius r > 0
in a metric space X . In case X = (Hn, dH ), resp. X = (Rn, dE ) we will write BH (p, r),
resp. BE (p, r).

Note that the Heisenberg metric dH defined above is bi-Lipschitz equivalent with the usual
sub-Riemannian (or Carnot–Carathéodory) metric on Hn . Our conclusions are all invariant under
bi-Lipschitz change of metric. Because of its simple explicit form, we work exclusively with the
Heisenberg metric dH in this paper.

In order to describe our results we must identify suitable notions of a Grassmannian of
subspaces (or subgroups) in the Heisenberg group, as well as projection mappings into such
subspaces. We will consider the class of homogeneous subgroups of the Heisenberg group. A
homogeneous subgroup G is a closed subgroup of Hn which is invariant under the intrinsic
dilations δs(z, t) = (sz, s2t), s > 0.

The homogeneous subgroups can be identified with linear subspaces of R2n+1 which are
contained in R2n

×{0} (in which case they are called horizontal) or which contain the t-axis (then
they are called vertical). But not all linear subspaces V contained in R2n

× {0} are homogeneous
subgroups, only those which correspond to isotropic subspaces V of R2n , that is, subspaces on
which the standard symplectic form vanishes identically. The restriction of the Heisenberg metric
to a horizontal subgroup coincides with the Euclidean metric.

Let V = V ×{0} be such a horizontal subgroup. Consider V⊥ := V⊥×R, where V⊥ denotes
the Euclidean orthocomplement of V in R2n . It is not hard to see that V⊥ is a homogeneous
(normal) subgroup; we call it the vertical subgroup associated to V. The pair V and V⊥ induces
a semidirect group splitting Hn

= V⊥ o V: each p ∈ Hn can be written uniquely as

p = PV⊥(p) ∗ PV(p),

with PV⊥(p) ∈ V⊥ and PV(p) ∈ V. This gives rise to a well-defined horizontal projection

PV : Hn
→ V, (z, t) → PV(z, t) = (πV (z), 0),

and a vertical projection

PV⊥ : Hn
→ V⊥, (z, t) → PV⊥(z, t) = (πV⊥(z), t − 2ω(πV⊥(z), πV (z))).

Whereas horizontal projections correspond to linear projections on the underlying Euclidean
space, are Lipschitz continuous both with respect to dH and dE , and are group homomorphisms
of Hn , vertical projections are neither Euclidean projections, nor Lipschitz continuous, nor group
homomorphisms (see [17]). It is therefore more difficult to study the behavior of the Hausdorff
dimension of sets in (Hn, dH ) under vertical projections than under horizontal projections.

Counterparts of the Euclidean projection theorems in the first Heisenberg group H1 were
obtained in [2]. The major difference to the Euclidean results is the fact that there is no exact
formula to compute the almost sure dimension of projections, but rather a range of possible
values. Moreover, dimension can actually increase under vertical projections, a phenomenon
which is obviously impossible in Euclidean spaces where projections are Lipschitz continuous.
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Horizontal subgroups in the first Heisenberg group can be identified with linear subspaces in the
(x, y)-plane and can thus be parameterized by an angle θ ∈ [0, π) in the obvious way. With
respect to this identification the almost sure dimension estimates from [2] can be summarized as
follows: Given a Borel set A ⊂ H1, the following dimension estimates hold:

max{0, min{dimH A − 2, 1}} ≤ dim PVθ
A ≤ min{dimH A, 1}

and

max{min{dimH A, 1}, 2 dimH A − 5} ≤ dim PV⊥θ A

≤ min


2 dimH A,
1
2
(dimH A + 3), 3


for almost every θ ∈ [0, π).

One goal of the present paper is to establish similar results on higher-dimensional Heisenberg
groups. In this case there exist not only horizontal lines, but also higher-dimensional horizontal
subgroups which cannot be so easily parameterized. Thus, if we want to formulate almost sure
dimension estimates for projection to horizontal or complementary vertical subgroups, we first
need a natural measure on the space of all m-dimensional horizontal subgroups of Hn analogous
to the measure γn,m on the Grassmannian G(n, m). Since not all linear subspaces V of R2n

correspond to horizontal subgroups V, we cannot work with the full Grassmannian G(2n, m).
Instead we employ the so-called isotropic Grassmannian which is defined as the space

Gh(n, m) := {V ∈ G(2n, m) : V an isotropic subspace of R2n
}.

To each V ∈ Gh(n, m) we associate a horizontal subgroup V and a complementary vertical
subgroup V⊥ as above. Similarly as one defines the natural measure γn,m on G(n, m) starting
from the Haar measure on the orthogonal group O(n), one can construct a measure µn,m on
Gh(n, m) from Haar measure on the unitary group U (n). It is with respect to this measure that
our results are formulated. We emphasize the elementary but important fact that the isotropic
Grassmannian Gh(n, m) is a submanifold of G(2n, m) of positive codimension, and that the
measure µn,m does not coincide with the restriction of γ2n,m to Gh(n, m).

Throughout the paper we assume that m and n are integers with 1 ≤ m ≤ n. For two
expressions A and B, we will write

A . B

if there exists a constant C such that A ≤ C B; the dependence of parameters like m, n, s, . . . ,
will be clear from the context.

For the horizontal projections we obtain the following dimension estimates, which are exact
generalizations of results which hold in the case n = 1.

Theorem 1.1. Let A ⊂ Hn be a Borel subset. Then

dim PV A ≤ min{dimH A, m} for all V ∈ Gh(n, m)

and

dim PV A ≥ max{0, min{dimH A − 2, m}} for µn,m almost all V ∈ Gh(n, m).

Furthermore, if dimH A > m + 2 then Hm(PV A) > 0 for µn,m a.e. V .
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In the proof of Theorem 1.1 we will use the following purely Euclidean result on the
dimension of projections onto isotropic subspaces of R2n . This result may also have applications
in symplectic geometry and seems to be of independent interest.

Theorem 1.2. If A is a Borel set in R2n , then

dimE πV (A) = min{dimE A, m} (1.3)

for µn,m almost every V ∈ Gh(n, m).

As mentioned before, the isotropic Grassmannian Gh(n, m) is a submanifold of G(2n, m).
The µn,m-almost sure estimate in Theorem 1.2 cannot be derived from known almost sure
dimension estimates for the usual Grassmannian G(2n, m), even if one takes into account
the more precise statements on the Hausdorff dimension of exceptional sets as in [15]. See
Remark 3.3 for further discussion.

Peres and Schlag [19] made a deep study of the measure-theoretic properties of nonlinear
projection-type mappings. One reason for Theorem 1.2 to hold is that the projections πV ,
V ∈ Gh(n, m), satisfy the transversality condition of Peres and Schlag. This has been shown
by Hovila [11]. Using results from [19] Hovila has obtained an alternate proof of Theorem 1.2
as well as an estimate for the Hausdorff dimension of the set of exceptional projections.

Let us briefly remark that Theorems 1.1 and 1.2, as well as our later Theorems 1.3 and 1.5
hold more generally for the class of so-called Suslin sets. The derivation of Theorem 1.1 from
Theorem 1.2, even for Borel sets A ⊂ Hn , requires knowledge of the latter for Suslin sets.

The situation is more subtle for the vertical projections. In this paper we limit ourselves to the
discussion of dimension bounds for vertical projections of low dimensional sets. There, a sharp
lower bound can be obtained by potential theoretic methods, using energy integrals. Although
the approach is the same as in the first Heisenberg group, the proof is more difficult as it is more
subtle to bound certain integrals, which are now given with respect to the measure µn,m . We
obtain the following result.

Theorem 1.3. Let A ⊂ Hn be a Borel subset with dimH A ≤ 1. Then

dimH PV⊥ A ≤ 2 dimH A for all V ∈ Gh(n, m)

and

dimH PV⊥ A ≥ dimH A for µn,m almost every V ∈ Gh(n, m).

The universal upper bound follows easily from the local 1
2 -Hölder continuity of PV⊥ . Both

the upper and lower bounds indicated in the theorem are sharp. To show sharpness of the upper
bound, let A be a subset of the x1-axis with dimH A ∈ [0, 1] prescribed. To show sharpness of
the lower bound, let A be a subset of the t-axis with dimH A ∈ [0, 1] prescribed.

In the first Heisenberg group there are also sharp universal dimension estimates which hold for
all vertical subgroups, see [2]. Such results can be proved using suitable covering arguments and
the comparison of Hausdorff dimensions with respect to the Euclidean and Heisenberg metric.
The Dimension Comparison Principle in the Heisenberg group asserts that for any set A ⊂ Hn

with dimensions dimE A = α ∈ [0, 2n + 1] and dimH A = β ∈ [0, 2n + 2], the inequalities

max{α, 2α − 2n} =: β−(α) ≤ β ≤ β+(α) := min{2α, α + 1} (1.4)

hold true. For more information on the Dimension Comparison Principle we refer the reader
to [3] and [4]. Similar ideas can be used to prove improved dimension bounds for sets A lying in
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a vertical subgroup W = V⊥ with V ∈ Gh(n, m). In this case, less horizontal directions have to
be considered. We leave it to the reader to verify that in this case, one has

max{α, 2α − (2n − m)} =: βW
− (α) ≤ β ≤ βW

+ (α) := min{2α, α + 1}. (1.5)

Using the estimates in (1.4) and (1.5) and similar techniques as in [2], we establish the fol-
lowing universal dimension estimates for projections in higher-dimensional Heisenberg groups.

Theorem 1.4. Let A ⊂ Hn be a Borel set, let V ∈ Gh(n, m), and let W be the complementary
vertical subgroup associated to the homogeneous horizontal subgroup V = V × {0} ⊂ Hn .
Denoting s = dimH A and t = dimH PW(A) we have

max


0,
1
2
(s − m), s − m − 1, 2(s − n − 1)− m


≤ t ≤ min


2s, s + 1,

1
2
(s − m)+ n + 1, 2n + 2− m


. (1.6)

We believe that the estimates in (1.6) are sharp for all n and m, but we do not have explicit
examples to this effect at present.

The last part of this paper is devoted to the study of the Hausdorff dimension of sets intersected
with cosets of vertical subgroups. As mentioned above, this kind of result is related to the
projection theorems and uses similar machinery from geometric measure theory. We will prove
the following analogue of the Euclidean slicing (or intersection) theorem.

Theorem 1.5. Let A ⊂ Hn be a Borel set with dimH A > m+2 such that 0 < HdimH A
H (A) <∞.

Then Hm({u ∈ V : dimH (A ∩ (V⊥ ∗ u)) = dimH A − m}) > 0 for µn,m-a.e. V ∈ Gh(n, m).

We are able to analyze the intersections with cosets of vertical subgroups, in part, because we
have good information about projection to horizontal subgroups. Note that V⊥ ∗ u = P−1

V (u) for
any u ∈ V. We have not been able to prove results concerning slicing with cosets of horizontal
subgroups. One reason for this is that we do not have a sufficiently good understanding of the
dimension distortion behavior of vertical projections.

Theorem 1.1 is sharp as we shall show in Remark 3.4. It is also easy to see by similar examples
that the condition dimH A > m + 2 is necessary in Theorem 1.5. As noted above Theorem 1.3
is sharp for sets of dimension at most one. However, sharp inequalities for vertical projections of
sets of dimension bigger than one remain an open problem, even in H1 (cf. the discussion in the
introduction of [2]).

The structure of this paper is as follows. We start in Section 2 with the definition of the
isotropic Grassmannian and a discussion of its properties. In Section 3 we discuss dimension
bounds for horizontal projections. In particular, we prove Theorems 1.1 and 1.2. Estimates for
vertical projections on higher-dimensional Heisenberg groups are discussed in Section 4. In
particular, we prove Theorem 1.3 in that section. In Section 5, we prove universal dimension
estimates for vertical projections. In the final section (Section 6) we prove Theorem 1.5 and
discuss other Heisenberg counterparts of Euclidean slicing theorems.

2. Isotropic Grassmannians

In this section we introduce the isotropic Grassmannian which provides the appropriate
parameter space for projection and slicing theorems in the Heisenberg group. We discuss these
Grassmannians as metric measure spaces and also as homogeneous spaces.
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Fix integers 1 ≤ m ≤ n. We introduce the isotropic Grassmannian

Gh(n, m) := {V ∈ G(2n, m) : V isotropic subspace of R2n
}

comprising all linear subspaces with the property that the symplectic form

ω(z, z′) =
n

i=1

yi x ′i − y′i xi = ⟨Jz, z′⟩

with

z = (x1, . . . , xn, y1, . . . , yn), z′ = (x ′1, . . . , x ′n, y′1, . . . , y′n) ∈ R2n

vanishes on V . Here we denoted by ⟨·, ·⟩ the standard scalar product on R2n and by

J =


0 In
−In 0


.

The space Gh(n, n) is called the Lagrangian Grassmannian and is well-known in the
literature [1,6]. The isotropic Grassmannians were previously considered in the context of
Heisenberg geometry by Mattila et al. [17].

There is a one-to-one correspondence between elements V ∈ Gh(n, m) and horizontal
homogeneous subgroups V = V × {0} of Hn . To illustrate this fact, we make the following
observation. Assume that a homogeneous subgroup V of Hn is completely contained inside the
hyperplane t = 0. Since V is by definition closed under group multiplication, for any (x, y, 0)

and (x ′, y′, 0) in V, we have that

(x, y, 0) ∗ (x ′, y′, 0) =


x + x ′, y + y′, 2

n
i=1

(yi x ′i − xi y′i )


is an element of V and therefore necessarily,

n
i=1(yi x ′i − xi y′i ) = 0. It is not hard to see that

this condition is also sufficient for linear subspaces of R2n+1 contained in the hyperplane t = 0
in order to carry the structure of a homogeneous subgroup.

In the first Heisenberg group the space of non-trivial horizontal subgroups

Vθ = spanR


cos θ

sin θ


× {0}, θ ∈ [0, π)

can be equipped in a natural way with the Lebesgue measure on [0, π). The situation becomes
more complicated in a higher dimensional Heisenberg group Hn with n > 1. There, one can
endow Gh(n, m) with a natural measure µn,m in a similar way as G(n, m) is endowed with the
measure γn,m (see [16, Chapter 3]), using unitary instead of orthogonal matrices.

Recall that a matrix C ∈ M(2n, R) is called orthogonal, written C ∈ O(2n, R), if CT C =
CCT

= I2n . The corresponding linear map preserves the standard inner product, or equivalently,
the Euclidean distance on R2n .

A matrix C ∈ M(2n, R) is said to be symplectic, written C ∈ Sp(n), if it preserves the
symplectic form: ω(Cz, Cz′) = ω(z, z′) for all z, z′ ∈ R2n . Equivalently, CT JC = J.

Next we consider complex linear maps. A matrix C ∈ M(n, C) is called unitary, written
C ∈ U (n, C), if C∗C = CC∗ = In , where C∗ = CT

denotes the adjoint of C. Equivalently, C
preserves the Hermitian scalar product on Cn .
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Each C ∈ M(n, C) can be written uniquely as C = A + iB with A, B ∈ M(n, R). Now
U (n, C) can be identified with a subgroup of M(2n, R) through the mapping

M(n, C)→ M(2n, R), A+ iB →


A −B
B A


.

This is a monomorphism which maps U (n, C) on the subgroup

U (n) := Sp(n) ∩ O(2n, R),

see for instance Proposition 2.12 in [9].
We will denote by O(2n) = O(2n, R), Sp(n), U (n) etc. both the above defined matrix groups

and the sets of linear maps which have a corresponding matrix representation.
The orthogonal group O(n) acts transitively on the unit sphere Sn−1 and on the Grassmannian

G(n, m). In a similar fashion, U (n, C) acts transitively on S2n−1, the unit sphere in Cn , and
on the isotropic Grassmannian Gh(n, m). Note that gV0 ∈ Gh(n, m) for all V0 ∈ Gh(n, m)

and g ∈ U (n). Indeed, since V0 is isotropic by assumption, the symplectic form ω vanishes
identically on V0. Since g ∈ U (n) is symplectic, ω vanishes also on g(V0).

Lemma 2.1. The group U (n) acts transitively on S2n−1 and on Gh(n, m).

In the proof of this lemma the same ideas are used as, for instance, in the proof of Theorem
1.26 (i) in [9].

Proof. Let V and V ′ be two isotropic m-dimensional subspaces of R2n with orthonormal bases
E = {e1, . . . , em} and E ′ = {e′1, . . . , e′m} respectively. Any isotropic subspace is contained in a
Lagrangian one, see for instance [9, p.15]. Denote by W and W ′ two such Lagrangian spaces
which contain V and V ′, respectively. By completing the set E to a basis of W and applying
Gram–Schmidt to the added vectors, we can find vectors em+1, . . . , en such that

O = {e1, . . . , em, em+1, . . . , en}

is an orthonormal basis of W . Analogously, one can find {e′m+1, . . . , e′n} such that

O′ = {e′1, . . . , e′m, e′m+1, . . . , e′n}

is an orthonormal basis of W ′. Then B = O ∪ JO and B′ = O′ ∪ JO′ are orthosymplectic bases
of R2n , this means that they are bases which are both symplectic, i.e.

ω(ei , e j ) = ω( fi , f j ) = 0, ω( fi , e j ) = δi, j for i, j ∈ {1, . . . , n}

(where fi = −Jei ) and orthogonal with respect to the standard scalar product on R2n . Then there
exists U ∈ O(2n) with U (ei ) = e′i and U ( fi ) = f ′i for all i ∈ {1, . . . , n}. In particular, U maps
E to E ′ and thus maps the isotropic subspace V to V ′ as desired.

Let z, z̃ ∈ R2n be two arbitrary points, which we write in the form z =
n

i=1 ai ei + bi fi and
z̃ =

n
i=1 ãi ei + b̃i fi . Since the bases O and O′ are orthosymplectic, it follows that

ω(U (z), U (z̃)) =
n

i=1

ãi bi − ai b̃i = ω(z, z̃).

Hence U ∈ Sp(n) and therefore U ∈ U (n) = Sp(n) ∩ O(2n) as desired. In particular, the proof
for m = 1 shows that U (n) acts transitively on S2n−1. �
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Now fix V0 ∈ Gh(n, m) and let ϑn be Haar measure on the group U (n) with ϑn(U (n)) = 1.
We define a Radon probability measure µn,m = fV0♯ϑn with fV0(g) = gV0, i.e.

µn,m(A) := ϑn({g ∈ U (n) : gV0 ∈ A}) for A ⊂ Gh(n, m). (2.1)

We will show that µn,m does not depend on the choice of V0. We claim that µn,m is invariant
under U (n). More precisely, for any g ∈ U (n) and A ⊂ Gh(n, m), one has

µn,m(g A) = µn,m(A).

This follows from the fact that ϑn is a Haar measure on U (n):

µn,m(g A) = ϑn({h ∈ U (n) : hV0 ∈ g A}) = ϑn({h ∈ U (n) : g−1hV0 ∈ A})

= ϑn({g−1h ∈ U (n) : g−1hV0 ∈ A}) = ϑn({h ∈ U (n) : hV0 ∈ A})

= µn,m(A).

We define

d(V, V ′) := ∥πV − πV ′∥ for V, V ′ ∈ Gh(n, m), (2.2)

where ∥ ·∥ denotes the usual operator norm for linear maps and πV : R2n
→ V denotes the usual

Euclidean orthogonal projection. This yields a metric on Gh(n, m). The group U (n) ⊂ O(2n)

acts on Gh(n, m) ⊂ G(2n, m) by isometries of this metric.
Consider now an arbitrary U (n) invariant Radon measure µ on Gh(n, m). Let V, V ′ ∈

Gh(n, m) and 0 < r < ∞. Since U (n) acts transitively on Gh(n, m) there exists g ∈ U (n)

such that gV = V ′. We exploit the fact that the distance d on Gh(n, m) is preserved under the
action of U (n) and the measure µ is by assumption U (n) invariant. This yields

µ(B(V ′, r)) = µ(B(gV, r)) = µ({Ṽ : d(Ṽ , gV ) ≤ r}) = µ({Ṽ : d(g−1Ṽ , V ) ≤ r})

= µ({g−1Ṽ : d(g−1Ṽ , V ) ≤ r}) = µ({Ṽ : d(Ṽ , V ) ≤ r}) = µ(B(V, r)).

We conclude that every U (n) invariant Radon measure µ on Gh(n, m) is uniformly distributed:

0 < µ(B(V, r)) = µ(B(V ′, r)) <∞ for all V, V ′ ∈ Gh(n, m), 0 < r <∞.

Lemma 2.2. The measures fV0♯ϑn , V0 ∈ Gh(n, m), are all equal.

Proof. As discussed above, the measures fV0♯ϑn , V0 ∈ Gh(n, m), are U (n) invariant, uniformly
distributed probability measures. Hence they are all equal, see [16, Thm 3.4]. �

We fix once and for all

V0 := {z = (x, y) ∈ R2n
: xm+1 = · · · = xn = y1 = · · · = yn = 0}. (2.3)

The following result is the analogue of Theorem 3.7 in [16] for U (n) instead of O(n).

Theorem 2.3. For z ∈ S2n−1 and A ⊂ S2n−1, ϑn({g ∈ U (n) : g(z) ∈ A}) = σ 2n−1(A), where
σ 2n−1 denotes normalized surface measure on S2n−1.

Proof. Note that ϑn({g ∈ U (n) : g(z) ∈ A}) = ( fz♯ϑn)(A) where fz : U (n) → S2n−1 is
defined by fz(g) := g(z). Our goal is to show fz♯ϑn = σ 2n−1. To this end, we first observe that
σ 2n−1(S2n−1) = 1 = ϑn(U (n)) = fz♯ϑn(S2n−1). Since σ 2n−1 is uniformly distributed on S2n−1,
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the equality of these two measures will follow if we show that fz♯ϑn is also uniformly distributed
on S2n−1. This can be seen as explained before, using the fact that U (n) acts transitively on S2n−1

and that ϑn is U (n) invariant by definition. �
The following (purely Euclidean) Lemma is crucial for dimension bounds for both horizontal

and vertical projections.

Lemma 2.4. There exists C = C(n) such that for all z ∈ R2n
\ {0} and 0 < δ <∞, one has

µn,m({V ∈ Gh(n, m) : |πV z| ≤ δ}) ≤ Cδm
|z|−m (2.4)

and

µn,m({V ∈ Gh(n, m) : |πV⊥ z| ≤ δ}) ≤ Cδ2n−m
|z|m−2n . (2.5)

Proof. The proof is analogous to that of Lemma 3.11 in [16], using Theorem 2.3. First, we
explain how to prove (2.4). Second, we sketch how to derive (2.5) by a similar argument.

Notice that

πV z = |z|πV


z
|z|


which allows us to assume |z| = 1. Recall that we are working with the Euclidean distance and
the Euclidean orthogonal projection on V . Therefore |πV z| = dist(z, V⊥). Consequently

µn,m({V : |πV z| ≤ δ}) = µn,m({V : dist(z, V⊥) ≤ δ})

= ϑn({g ∈ U (n) : dist(z, g(V0)
⊥) ≤ δ}),

where V0 is as in (2.3); the second equality here follows directly from the definition of the
measure µn,m . Since each g ∈ U (n) is orthogonal we have g(V0)

⊥
= g(V⊥0 ) and therefore

µn,m({V : |πV z| ≤ δ}) = ϑn({g ∈ U (n) : dist(z, g(V⊥0 )) ≤ δ})

= ϑn({g ∈ U (n) : dist(g−1(z), V⊥0 ) ≤ δ})

= ϑn({g ∈ U (n) : dist(g(z), V⊥0 ) ≤ δ})

= σ 2n−1({w ∈ S2n−1
: dist(w, V⊥0 ) ≤ δ}),

where we have applied Theorem 2.3 in the last step. Then it follows as in [16, p.50] that

σ 2n−1({w ∈ S2n−1
: dist(w, V⊥0 ) ≤ δ}) ≤ α(2n)−122nδm,

which concludes the proof of (2.4).
The second inequality (2.5) can be derived by a similar argument. First, one proves that

µn,m({V : |πV⊥ z| ≤ δ}) = σ 2n−1({w ∈ S2n−1
: dist(w, V0) ≤ δ}).

We conclude as before that σ 2n−1({w ∈ S2n−1
: dist(w, V0) ≤ δ}) ≤ α(2n)−122nδ2n−m . �

The isotropic Grassmannian Gh(n, m), m ∈ {1, . . . , n}, can also be endowed with the
structure of a homogeneous space, using the transitive action of U (n) on Gh(n, m). In order
to describe this space more precisely, we study the stabilizer subgroup

GV0 = {g ∈ U (n) : gV0 = V0}

of the fixed subspace V0 given in (2.3).
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Lemma 2.5. Let h : R2k
→ R2k be linear. The following conditions are equivalent:

1. h ∈ U (k);
2. h =


A −B
B A


with A, B ∈ M(k, R), AAt

+ BBt
= Ik , and BAt

= ABt ;

3. h =


A −B
B A


with A, B ∈ M(k, R), At A+ Bt B = Ik , and Bt A = At B.

This fact is standard, see e.g., [9, p. 33].

Proposition 2.6. Let V0 be as in (2.3). A linear transformation g : R2n
→ R2n belongs to the

stabilizer group GV0 if and only if it has the form

g =


G11 0 0 0

0 G22 0 G24
0 0 G33 0
0 G42 0 G44


with G11, G33 ∈ M(m, R), G22, G24, G42, G44 ∈ M(n − m, R), G11 = G33 ∈ O(m) and

G22 G24
G42 G44


∈ U (n − m). (2.6)

The stabilizer group GV0 is isomorphic to O(m)×U (n − m).

Proof. We decompose R2n as Rm
× Rn−m

× Rm
× Rn−m and write accordingly a given linear

map g : R2n
→ R2n in block matrix form

g =


G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44

 .

Since g preserves Rm
× {0}, it follows that G21 = G31 = G41 = 0. As g is unitary, we may

apply Lemma 2.5 with

A =


G11 G12
0 G22


=


G33 G34
G43 G44


and B =


0 G32
0 G42


=


−G13 −G14
−G23 −G24


. (2.7)

The condition AAt
+ BBt

= In implies

G22Gt
22 +G42Gt

42 = In−m, (2.8)

while BAt
= ABt yields

G42Gt
22 = G22Gt

42. (2.9)

With the help of Lemma 2.5 it follows from (2.7), (2.8) and (2.9) that (2.6) holds. Using
At A + Bt B = In , we find Gt

11G11 = Im , which suffices to show that G11 ∈ O(m) and thus,
by (2.7), also G33 ∈ O(m). Moreover, (2.7) immediately implies G13 = G23 = G43 = 0. The
condition At A+Bt B = In also yields Gt

11G12 = 0, which gives G12 = G34 = 0. Similarly, one
can conclude from Bt A = At B that G32 = G14 = 0. It follows that the matrix corresponding to
g is of the desired form.

Conversely, it is easily verified that any block matrix of this form belongs to GV0 .
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Finally, the map from O(m)×U (n − m) to U (n) given by


G11,


G22 G24
G42 G44


→


G11 0 0 0

0 G22 0 G24
0 0 G11 0
0 G42 0 G44


is an isomorphism from O(m)×U (n − m) onto GV0 . �

Proposition 2.7. The isotropic Grassmannian Gh(n, m) is isomorphic to the quotient space
U (n)/O(m)×U (n − m).

Proof. The group U (n) acts transitively on Gh(n, m). By a well-known result, Gh(n, m) is
isomorphic to U (n)/GV0 . The claim follows by Proposition 2.6. �

In the following, we discuss in more detail the homogeneous space U (n)/O(m)×U (n−m);
this allows us to better understand the Grassmannian Gh(n, m).

As mentioned above, we identify Gh(n, m) with U (n)/O(m)×U (n − m) by the mapping

V = gV0 ←→ gGV0 .

The identification is well defined since gV = g′V for g, g′ ∈ U (n) if and only if gGV0 = g′GV0 .
The quotient U (n)/O(m)×U (n−m) carries the structure of a smooth manifold with dimension

dim U (n)/O(m)×U (n − m) = dim U (n)− dim O(m)×U (n − m)

= n2
−


m(m − 1)

2
+ (n − m)2


= 2nm −

m(3m − 1)

2
.

In particular, the Lagrangian Grassmannian Gh(n, n) is a manifold of dimension 1
2 n(n + 1).

Remark 2.8. The codimension of Gh(n, m) in G(2n, m) is

(2nm − m2)−


2nm −

m(3m − 1)

2


=

m(m − 1)

2
= dim O(m).

This can be explained as follows: there is an extra O(m) degree of freedom in G(2n, m) which
is not present in Gh(2n, m) since in G(2n, m), unlike in Gh(n, m), we are free to rotate the
symplectic complement of the given subspace V by an orthogonal map.

The standard invariant Riemannian metric on U (n) induces a Riemannian metric and a
Riemannian volume on the homogeneous space Gh(n, m). The resulting metric is bi-Lipschitz
equivalent to the metric introduced in (2.2), while the resulting measure is comparable to the
Hausdorff measure of dimension dim Gh(n, m) and to µn,m .

Remark 2.9. To conclude this section we remark that U (n) also acts by isometries on the
Heisenberg group (Hn, dH ), according to the formula g ·(z, t) = (gz, t). In the following section
we will consider the images of subsets of both R2n and Hn by unitary matrices.
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3. Dimension bounds for horizontal projections

In this section we discuss upper and lower bounds for the dimension of horizontal projections
of subsets of the Heisenberg group Hn . In particular, we prove Theorem 1.1.

We begin by establishing Theorem 1.2. As mentioned in the introduction, this purely
Euclidean result may be of independent interest.

The proof of Theorem 1.2 uses energy estimates and Frostman’s lemma. For Suslin subsets of
complete, separable metric spaces, such results are due to Howroyd, see [12]. We briefly recall
the relevant statements and refer the reader to [12] or [16, Chapter 8] for more details.

By M(A) we denote the collection of positive, finite Borel regular measures supported on a
set A in a metric space X .

Theorem 3.1 (Frostman’s Lemma). Let A be a Suslin subset of a complete, separable metric
space (X, d). Suppose that there exists s > 0, µ ∈M(A), and r0 ∈ (0,∞] so that the inequality

µ(B(x, r)) ≤ r s (3.1)

holds for all x ∈ A and 0 < r < r0. Then Hs(A) > 0. In particular, dim A ≥ s. Conversely, if
Hs(A) > 0 then there exists µ ∈M(A) so that (3.1) holds for all x ∈ A and r > 0.

The s-energy of a measure µ ∈M(A) is defined to be

Is(µ) =


X


X

d(x, y)−s dµx dµy.

Theorem 3.2 (Frostman’s Lemma, Energy Version). Let A be a Suslin subset of a complete,
separable metric space (X, d) and let s > 0 be such that there exists µ ∈ M(A) with
Is(µ) < ∞. Then dim A ≥ s. Conversely, if s < dim A, then there exists µ ∈ M(A) with
Is(µ) <∞.

Proof of Theorem 1.2. Let A ⊂ R2n be a Suslin set. Since the upper bound in (1.3) holds
trivially for all V ∈ Gh(n, m), it suffices to establish the lower bound for µn,m-a.e. V .

Let us assume that dimE A ≤ m. Pick an arbitrary 0 < s < dimE A. Then there exists
µ ∈M(A) with

Is(µ) =


A


A
|z − w|−s dµz dµw <∞.

Then, analogously as in the proof for G(n, m), see [7] or [16],
Gh(n,m)

Is(πV ♯µ) dµn,m V =


Gh(n,m)


A


A
|πV (z − w)|−s dµz dµw dµn,m V

=


A


A


Gh(n,m)

|πV (z − w)|−s dµn,m V dµz dµw . Is(µ).

In the last step we have used Lemma 2.4 and the following estimates:
Gh(n,m)

|πV (z − w)|−s dµn,m V =

∞

0
µn,m({V : |πV (z − w)| ≤ η−

1
s }) dη

≤


|z−w|−s

0
dη +


∞

|z−w|−s
µn,m({V : |πV (z − w)| ≤ η−

1
s }) dη
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≤ |z − w|−s
+ C |z − w|−m


∞

|z−w|−s
η−

m
s dη ≤ C |z − w|−s .

Thus Is(πV ♯µ) is finite for µn,m a.e. V ∈ Gh(n, m). By Theorem 3.2, we conclude that
dimE πV (A) ≥ s for µn,m a.e. V ∈ Gh(n, m). This completes the proof.

Remark 3.3. Theorem 1.2 is the analogue for Gh(n, m) of classical Euclidean projection
theorems for the usual Grassmannian. The result is somewhat surprising. Consider for example
the case n = m = 2. Let A be a subset of R4 with dimE A = s ≤ 2. Then, by classical projection
theorems, dimE πV (A) = dimE A for γ4,2 a.e. V ∈ G(4, 2). By a result of Mattila [15] the
exceptional set of spaces V ∈ G(4, 2) for which dimE PV (A) ≠ dimE A is of dimension at most
2 + s, and by results of Mattila and Kaufman [13] this estimate is sharp. On the other hand, the
dimension of the isotropic Grassmannian Gh(2, 2) is equal to 3 which is smaller than the largest
possible dimension 2 + s of the exceptional set related to A, provided that dimE A = s > 1.
So one could a priori imagine a situation where Gh(2, 2), or more generally Gh(n, m), is
completely hidden inside the exceptional set of directions for which the lower dimension bound
of Theorem 1.2 does not hold. The theorem shows that such a situation cannot occur.

By exploiting the relationship between the Euclidean projection πV and the Heisenberg
horizontal projection PV with V = V × {0}, Theorem 1.2 can be applied in order to prove
Theorem 1.1 on the almost sure dimension bounds for horizontal projections.

Proof of Theorem 1.1. The upper bound follows from the Lipschitz continuity of PV and the
monotonicity of the dimension, using the fact that the Heisenberg distance coincides with the
Euclidean metric on every horizontal subgroup V.

Concerning the lower bound, we prove by an appropriate covering argument that

dimE π(A) ≥ dimH A − 2, (3.2)

for every A ⊂ Hn , where π : Hn
→ R2n denotes the standard projection π(z, t) = z.

We may assume without loss of generality that A is bounded. In fact, let us assume that
|t | ≤ 1 for all points p = (z, t) ∈ A. Let s > dimE π(A), let ε > 0, and cover the set
π(A) with a family of Euclidean balls {BE (zi , ri )}i so that


i r s

i < ε. Since the projection map
π : (Hn, dH )→ (R2n, dE ) is 1-Lipschitz, the fiber π−1(BE (z, r)) contains the ball BH ((z, t), r)

for any t ∈ R. The shape of Heisenberg balls is described by the well-known Ball–Box Theorem.
We can choose an absolute constant C0 > 0 and Ni ≤ C0r−2

i values ti j so that the family
{BH ((zi , ti j ), C0ri )} j covers the set BE (zi , ri )× [−1, 1], see also similar estimates in [4]. Then
the family {BH ((zi , ti j ), C0ri )}i, j covers the set A. Denoting by r(B) the radius of a ball B, we
compute

i, j

r(BH ((zi , ti j ), C0ri ))
s+2
=


i

Ni (C0ri )
s+2
≤ C


i

r s
i ≤ Cε

for some C depending only on C0 and s. Letting ε→ 0 gives

Hs+2
H (A) = 0

so dimH A ≤ s + 2. We obtain (3.2) by letting s tend to dimE π(A).
Now we may apply Theorem 1.2 to the Suslin set π(A) in order to get

dimH (PV(A)) = dimE πV (π(A)) ≥ min{dimE π(A), m} ≥ min{dimH A − 2, m}
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for µn,m almost every V ∈ Gh(n, m). Note that in general the projected set π(A) may be only a
Suslin set, even if the original set A ⊂ Hn is a Borel set.

The final statement in the theorem (on the µn,m a.e. positivity ofHm(PV A)) will follow from
a result which we will prove in Section 6. See Proposition 6.1 and its Corollary 6.2. �

Remark 3.4. Theorem 1.1 is sharp as we will now demonstrate. For each 0 ≤ s ≤ m + 2 we
will construct sets A, B ⊂ Hn so that dimH A = dimH B = s,

dim PV(A) = min{s, m} (3.3)

for all V ∈ Gh(n, m), and

dim PV(B) = max{0, s − 2} (3.4)

for all V in some subset of Gh(n, m) of full µn,m measure. Moreover, for each m+2 < s ≤ 2n+2
we will construct a set A ⊂ Hn so that dimH A = s and Hm(PV A) > 0 for all V ∈ Gh(n, m).

First we give examples realizing the upper bound; these are the sets denoted A in the previous
paragraph. If s ≤ m, choose an s-dimensional set A′ ⊂ V0, where V0 is a fixed element of
Gh(n, m). Let {V1, . . . , VN } be a 1

2 -net in Gh(n, m). Corresponding to these subspaces, we may
choose matrices g1, . . . , gN ∈ U (n) with gi (V0) = Vi , i = 1, . . . , N . Let A =

N
i=1 gi (A′).

Then dimH A = s. Now consider PV(A) for an arbitrary V ∈ Gh(n, m). There exists
i ∈ {1, . . . , N } such that d(V, Vi ) < 1

2 , where d denotes the metric on Gh(n, m) defined as
in (2.2). We claim that Vi ∩ V⊥ = {0}. Indeed, assume towards a contradiction that there exists
v ∈ Vi ∩ V⊥ with v ≠ 0. Without loss of generality, we may assume that |v| = 1. It follows that

d(V, Vi ) = ∥πV − πVi ∥ ≥ |πV (v)− πVi (v)| = |v| = 1,

which contradicts the assumption. Thus, ker(πV |Vi ) = Vi ∩ V⊥ = {0} and πV |Vi : Vi → V is
bi-Lipschitz. Thus, dimH PV(gi (A′)) = s, in particular, dimH PV(A) = s.

If s > m, choose again any s-dimensional set A′ ⊂ Hn and let A = A′ ∪
N

i=1 gi (V0). Then
dimH A = s and Hm(PV(A)) > 0 for all V ∈ Gh(n, m).

We now give examples realizing the lower bound; these are the sets denoted B in the first
paragraph of this remark. If 0 ≤ s ≤ 2, choose an s-dimensional set B contained in the t-axis.
Then PV(B) = {0} for all V ∈ Gh(n, m). It remains to construct the desired set B in case
2 ≤ s ≤ m + 2. For fixed V0 ∈ Gh(n, m), choose any set B1 ⊂ V0 of dimension s − 2. Set
B = {(z, t) : z ∈ B1, t ∈ R} ⊂ Hn . Then B is s-dimensional and PV(B) = πV (B1) × {0} for
any V ∈ Gh(n, m). The result follows from Theorem 1.2.

We emphasize that the above construction works for an arbitrarily chosen set B1 ⊂ V0. On the
other hand, it is possible to use the construction in the first part of the remark in order to define a
particular set B with dimH B = s and dim PV(B) = s − 2 for all V ∈ Gh(n, m).

4. Lower bounds for the vertical projections

The aim of this section is to prove Theorem 1.3 on the lower dimension bound for vertical
projections of low dimensional subsets in Hn . Analogously as in the case n = 1, already
discussed in [2], the idea is to use energy methods in order to establish this lower bound. The
goal is to show for 0 < s < 1 that there exists c = c(n, m, s) > 0 with

Gh(n,m)

dH (PV⊥(p), PV⊥(q))−s dµn,m V ≤ cdH (p, q)−s

for all (p, q) ∈ A × A, p ≠ q. (4.1)
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Although the idea is the same for all dimensions, the proof of (4.1) is more subtle for n > 1
than for n = 1 and requires careful work with the measure µn,m . As preparation, we provide
explicit formulas for the Heisenberg distance of points and the distance of the respective image
points under vertical projection. Given points p = (z, t) and q = (ζ, τ ), we observe that

dH (p, q) =
4

|z − ζ |4 + (t − τ − 2ω(ζ, z))2

while dH (PV⊥(p), PV⊥(q)) is equal to

4

|πV⊥ (z − ζ )|4 + (t − τ − 2ω(πV⊥ (z), πV (z))+ 2ω(πV⊥ (ζ ), πV (ζ ))− 2ω(πV⊥ (ζ ), πV⊥ (z)))2.

Proof of Theorem 1.3. Let 0 < s < dimH A ≤ 1 and let µ ∈ M(A) be a measure with
Is(µ) <∞. The existence of such µ is guaranteed by Theorem 3.2.

Let us assume that the inequality in (4.1) has been established. Then, for the Frostman measure
µ ∈M(A), we find

Gh(n,m)

Is((PV⊥)♯µ) dµn,m V

=


A


A


Gh(n,m)

dH (PV⊥(p), PV⊥(q))−s dµn,m V dµp dµq

≤ c


A


A

dH (p, q)−s dµp dµq = cIs(µ) <∞,

which proves that Is((PV⊥)♯µ) is finite for µn,m a.e. V ∈ Gh(n, m). This in turn yields
dimH PV⊥(A) ≥ s for µn,m a.e. V ∈ Gh(n, m), see Theorem 3.2. Taking the limit as s
approaches dimH A concludes the proof of Theorem 1.3. �

It remains to establish (4.1). The remainder of this section is devoted to this task.
To this end, we split the set {(p, q) ∈ A × A : p ≠ q} into two subsets where either the first

or the second summand in the formula for dH (p, q) is dominating. Restricting to these subsets
makes the desired integral estimate easier to obtain.

More precisely, let us define

A1 := {(p, q) ∈ A × A : |z − ζ |4 ≥ (t − τ − 2ω(ζ, z))2 with p ≠ q}

and

A2 := {(p, q) ∈ A × A : |z − ζ |4 < (t − τ − 2ω(ζ, z))2
}.

Consider first points p = (z, t) and q = (ζ, τ ) with (p, q) ∈ A1. Observe that

dH (PV⊥(p), PV⊥(q))−s
≤ |πV⊥(z − ζ )|−s,

and dH (p, q)−s
≥ 2−

s
4 |z − ζ |−s for all V ∈ Gh(n, m). Thus

Gh(n,m)

dH (PV⊥(p), PV⊥(q))−s dµn,m V ≤


Gh(n,m)

|πV⊥(z − ζ )|−s dµn,m V .

Similarly as in the proof of Theorem 1.2, we can apply Lemma 2.4 in order to show for 0 < s < 1
(even for 0 < s < 2n−m) that there is a constant c = c(m, n, s) such that for z− ζ ∈ R2n

\ {0},
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we have
Gh(n,m)

|πV⊥(z − ζ )|−s dµn,m V ≤ c|z − ζ |−s .

Notice that we may assume z ≠ ζ : indeed, if z = ζ and |z − ζ |4 ≥ (t − τ − 2ω(z, ζ ))2 then it
follows that t = τ and thus p = q. It follows that for (p, q) ∈ A1 we have

Gh(n,m)

dH (PV⊥(p), PV⊥(q))−s dµn,m V ≤


Gh(n,m)

|πV⊥(z − ζ )|−s dµn,m V

≤ c|z − ζ |−s . dH (p, q)−s,

as desired.
Consider now points p = (z, t) and q = (ζ, τ ) with (p, q) ∈ A2; this is the more difficult

case. Using the facts πV⊥(z) = z − πV (z) and ω(πV (z), πV (ζ )) = 0, we see that

ω(πV⊥(z), πV (z))− ω(πV⊥(ζ ), πV (ζ ))+ ω(πV⊥(ζ ), πV⊥(z))

= ω(z − ζ, πV (z + ζ ))+ ω(ζ, z)

for arbitrary V ∈ Gh(n, m). Hence

I :=


Gh(n,m)

dH (PV⊥(p), PV⊥(q))−s dµn,m V

is bounded above by
Gh(n,m)

|t − τ − 2ω(ζ, z)− 2ω(z − ζ, πV (z + ζ ))|−s/2 dµn,m V . (4.2)

If z = ζ , then the integrand in (4.2) is equal to |t − τ |−s/2 and so I = |t − τ |−s/2
= dH (p, q)−s .

If z = −ζ , then again I = |t − τ |−s/2. Moreover, in this case dH (p, q) =
4


16|z|4 + (t − τ)2 ≤

21/4
|t − τ |1/2 (since (p, q) ∈ A2) and so I ≤ 2s/4dH (p, q)−s . In view of these facts we may

assume z ≠ ±ζ . We rewrite (4.2) in the form

(|z + ζ ||z − ζ |)−s/2


Gh(n,m)

 t − τ − 2ω(ζ, z)
|z + ζ ||z − ζ |

− 2ω


z − ζ

|z − ζ |
, πV


z + ζ

|z + ζ |

−s/2

dµn,m V .

Our goal is to prove (4.1), which means that we should find a constant c > 0 such that
I ≤ cdH (p, q)−s for all (p, q) ∈ A2. This boils down to an estimate for an integral of the
type


Gh(n,m)

|a − 2ω(v, πV (w))|−s/2 dµn,m V for a ∈ R and v, w ∈ S2n−1. Such an estimate is
contained in the following proposition.

Proposition 4.1. Let 0 < s < 1. The estimate
Gh(n,m)

|a − 2ω(v, πV (w))|−s/2 dµn,m V . 1 (4.3)

holds for all a ∈ R and v, w ∈ S2n−1.
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Assuming the validity of this proposition, let us complete the proof of the theorem. We
consider two cases. Notice that |2ω(v, πV (w))| ≤ 2 for all v, w ∈ S2n−1. If

|a| =
|t − τ − 2ω(ζ, z)|
|z + ζ ||z − ζ |

≥ 4,

then

I . (|z + ζ ||z − ζ |)−s/2

|t − τ − 2ω(ζ, z)|
|z + ζ ||z − ζ |

−s/2

. dH (p, q)−s .

If

|a| =
|t − τ − 2ω(ζ, z)|
|z + ζ ||z − ζ |

< 4,

then the result follows by an application of Proposition 4.1:

I . (|z + ζ ||z − ζ |)−s/2 . |t − τ − 2ω(ζ, z)|−s/2 . dH (p, q)−s .

It remains to prove Proposition 4.1. We will divide the proof into two cases: the Lagrangian
case (m = n) and the sub-Lagrangian case (1 ≤ m < n). The proof in these two cases will
proceed by rather different methods.

Proof of Proposition 4.1 in the sub-Lagrangian case m < n. For W ∈ Gh(n, m + 1), let

G(W, m) = {V ∈ G(2n, m) : V ⊂ W }.

Then G(W, m) ⊂ Gh(n, m). Let µW,m be the natural measure on G(W, m). For a nonnegative
Borel function f on Gh(n, m), we have

f dµn,m =


Gh(n,m+1)


G(W,m)

f (V ) dµW,m V dµn,m+1W. (4.4)

Indeed, both sides define positive linear functionals on the space of nonnegative Borel functions
on Gh(n, m) and thus define Radon measures by Riesz’s representation theorem. Moreover, both
measures have total mass one and are invariant under the transitive action of U (n). Since such
measures are uniquely defined (see for instance [8, 2.7.11(2)]), the identity (4.4) follows. Writing
S(W ) = S2n−1

∩W , we obtain
f dµn,m = c


Gh(n,m+1)


S(W )

f̃ (e) dHme dµn,m+1W,

where f̃ (e) = f (e⊥ ∩W ).
Suppose now that V ∈ G(W, m) for some W ∈ Gh(n, m + 1) with m < n. Then

ω(v, πV (w)) = ⟨Jv, πV (w)⟩ = ⟨πW (Jv), πV (πW (w))⟩.

We may write V = e⊥ ∩W for some e ∈ S(W ). Then πV (x) = x − ⟨e, x⟩e for x ∈ W and

ω(v, πV (w)) = ⟨πW (Jv), πW (w)⟩ − ⟨πW (w), e⟩⟨πW (Jv), e⟩.

For technical reasons, we consider the set

(Gh(n, m + 1))v,w := {W ∈ Gh(n, m) : πW (Jv) ≠ 0 and πW (w) ≠ 0}.
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By Lemma 2.4 we have µn,m(Gh(n, m) \ (Gh(n, m))v,w) = 0. We may write the integral in
(4.3) as

|a − 2ω(v, πV (w))|−s/2 dµn,m V

= c


(Gh(n,m+1))v,w


S(W )

|a − 2⟨πW (Jv), πW (w)⟩

+ 2⟨πW (w), e⟩⟨πW (Jv), e⟩|−s/2dHme dµn,m+1W

= c


(Gh(n,m+1))v,w

|πW (Jv)|−s/2
|πW (w)|−s/2


S(W )

|b(W )

+ 2⟨v̄, e⟩⟨w̄, e⟩|−s/2 dHme dµn,m+1W (4.5)

where

b(W ) =
a − 2⟨πW (Jv), πW (w)⟩

|πW (Jv)| |πW (w)|
,

v̄ = πW (Jv)/|πW (Jv)|, and w̄ = πW (w)/|πW (w)|.
We shall prove that the inner integral is uniformly bounded.

Lemma 4.2. Suppose 0 < s < 1 and m ≥ 1. Then for v, w ∈ Sm and b ∈ R, we have
Sm
|b + 2⟨v, e⟩⟨w, e⟩|−s/2 dHme . 1. (4.6)

Assuming the lemma, we establish (4.3). We may identify S(W ) with Sm . In (4.5) the inner
integral is uniformly bounded for all v, w and W . Hence

|a − 2ω(v, πV (w))|−s/2 dµn,m V

.


(Gh(n,m+1))v,w

|πW (Jv)|−s/2
|πW (w)|−s/2 dµn,m+1W

=


Gh(n,m+1)

|πW (Jv)|−s/2
|πW (w)|−s/2 dµn,m+1W

≤


Gh(n,m+1)

|πW (Jv)|−s dµn,m+1W
1/2 

Gh(n,m+1)

|πW (w)|−s dµn,m+1W
1/2

. 1

by Corollary 3.12 in [16] or as in the proof of Theorem 1.2 above. This concludes the proof of
Proposition 4.1 in the sub-Lagrangian case, except for the proof of Lemma 4.2. �

The integrability of polynomials to negative powers is well-studied in complex algebraic
geometry where it is related to the log canonical threshold: for an informative account see [18].
But such results cannot be easily applied to integrals over manifolds such as spheres or
Grassmannians. In our explicit context we prefer to prove Lemma 4.2 directly.

Proof of Lemma 4.2. First we observe that it suffices to prove the statement for b lying in a
compact interval centered at the origin, since the integrand is clearly uniformly bounded for
large |b|. Define f (e) = b+ 2⟨v, e⟩⟨w, e⟩. It suffices to show that every point e ∈ Sm , f (e) ≠ 0
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or some of the first or second order partial derivatives of f along Sm at e does not vanish. If this
is true then, by continuity and compactness, there is c > 0 independent of b, v and w such that
one of these quantities is at least c at every e ∈ Sm . This allows us to deduce (4.6) from sub-level
set estimates as in Lemma 3.4 and its proof in [5].1

Fix e ∈ Sm , and for u ∈ Sm
∩ e⊥ and ξ ∈ [0, 1] define

fu(ξ) = f


1− ξ2e + ξu

= b + 2


v,


1− ξ2e + ξu

 
w,


1− ξ2e + ξu


.

Direct computations give f ′u(0) = 2(⟨v, e⟩⟨w, u⟩ + ⟨v, u⟩⟨w, e⟩) and f ′′u (0) = 4(⟨v, u⟩⟨w, u⟩ −
⟨v, e⟩⟨w, e⟩). Consequently,

1
4

f ′u(0)2
+

1
16

f ′′u (0)2
=


⟨v, e⟩2 + ⟨v, u⟩2

 
⟨w, e⟩2 + ⟨w, u⟩2


. (4.7)

We will show that there exists u ∈ Sm
∩ e⊥ such that either f ′u(0) ≠ 0 or f ′′u (0) ≠ 0. Suppose

not. Then at least one of the two factors on the right hand side of (4.7) is equal to zero for some
choice of u. Without loss of generality assume that it is the first factor. Then ⟨v, e⟩ = 0, so v ∈ e⊥

and the desired conclusion holds unless 0 = f ′v(0) = f ′′v (0), i.e., unless ⟨w, e⟩ = ⟨w, v⟩ = 0.
In the latter case, we also have w ∈ e⊥. Then αv + βw ∈ Sm

∩ e⊥ for all α and β satisfying
α2
+ β2

= 1. If ⟨v, w⟩ = 0 then choose any such pair (α, β) with αβ ≠ 0, while if ⟨v, w⟩ ≠ 0
then choose α = (1+ ⟨v, w⟩)−1/2 and β = ⟨v, w⟩ (1+ ⟨v, w⟩)−1/2. With these choices of α and
β we compute f ′′αv+βw(0) = 4


αβ(1+ ⟨v, w⟩2)+ ⟨v, w⟩


= 8⟨v, w⟩ ≠ 0. �

We now give another argument which covers the Lagrangian case m = n in the statement of
Proposition 4.1.

Proof of Proposition 4.1 in the Lagrangian case m = n. Let

V0 = Rn
× {0} = span{e1, . . . , en}.

According to Proposition 2.7, the Lagrangian Grassmannian Gh(n, n) is identified with the
homogeneous space U (n)/O(n). By the definition of the measure µn,m (see (2.1)) we have

U (n)

|a − 2ω(v, πgV0(w))|−s/2 dϑn(g) =


Gh(n,n)

|a − 2ω(v, πV (w))|−s/2 dµn,n(V ).

Consequently, it suffices to consider the integral
U (n)

|a − 2ω(v, πgV0(w))|−s/2 dϑn(g) (4.8)

which we will do from now on.
The standard basis {e1, . . . , en} is an orthonormal basis for V0. For every g ∈ U (n), the family

{ge1, . . . , gen} is an orthonormal basis for gV0. Thus πgV0(w) =
n

j=1⟨w, ge j ⟩ ge j and

ω(v, πgV0(w)) = ⟨Jv, πgV0(w)⟩ =

n
j=1

⟨w, ge j ⟩ ⟨Jv, ge j ⟩ =

n
j=1

⟨gT w, e j ⟩ ⟨gT Jv, e j ⟩.

1 Lemma 3.4 in [5] is formulated in Rn , but easily transfers to Sm via chart maps.
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Since g is symplectic, gT commutes with J and so

ω(v, πgV0(w)) =

n
j=1

⟨gT w, e j ⟩ ⟨JgT v, e j ⟩.

Our goal now is to study the behavior of the function F : U (n)→ R given by

F(g) := a − 2ω(v, πgV0(w)) = a − 2
n

j=1

⟨gT w, e j ⟩ ⟨JgT v, e j ⟩ (4.9)

in a neighborhood of the hypersurface Z = F−1(0). As in the previous proof, by an appeal to the
sub-level set estimates in [5, Lemma 3.4], it suffices to check that F vanishes to no worse than
second order along Z . Again, to make the argument precise we should work in coordinate charts.
To simplify the exposition we show here that at each g ∈ Z , either DF(g) ≠ 0 or D2 F(g) ≠ 0.
To this end, we will exhibit explicit one-parameter families (gs) passing through each g ∈ Z so
that, setting f (s) = F(gs), we have either f ′(0) ≠ 0 or f ′′(0) ≠ 0.

At this stage to further simplify the exposition we switch to the complex unitary group
U (n, C) = {g ∈ M(n, C) : g∗g = In}. Recall that U (n, C) maps onto U (n) by the
monomorphism

g = A+ iB →


A −B
B A


.

Identifying the vectors v, w ∈ S2n−1 as vectors in the unit sphere of Cn , we observe that the
function F given in (4.9) takes the form

F(g) = a + 2
n

j=1

Re(g∗w • e j ) Im(g∗v • e j ).

Here we wrote z • w for the standard Hermitian inner product on Cn .
The tangent space to U (n, C) at g can be identified as follows:

TgU (n, C) = {B ∈ M(n, C) : g∗B+ B∗g = 0}.

It is clear that TgU (n, C) = gTIn U (n, C) where TIn U (n, C) = u(n, C) = {A ∈ M(n, C) :

A+ A∗ = 0} denotes the Lie algebra of U (n, C) consisting of skew-Hermitian matrices.
For fixed A ∈ u(n, C) consider the one-parameter family (gs) given by gs = g exp(sA). Then

g0 = g and d
ds gs |s=0 = gA.

Lemma 4.3. Let

A =


i 0
0 0


,

let (gs) be the one-parameter family described above, and let f (s) = F(gs). Then f ′(0) = −2
Re(v̂1 ŵ1) and f ′′(0) = −4 Im(v̂1 ŵ1).

Here and henceforth we denote by v̂, resp. ŵ, the vector g∗v, resp. g∗w. Note that v̂ and ŵ

are still unit vectors, since g is unitary.

Remark 4.4. The index 1 in Lemma 4.3 can be replaced by any index k between 1 and n.
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Corollary 4.5. If f ′(0) = f ′′(0) = 0 for all such one-parameter families (for each k =
1, . . . , n), then for each k either v̂k = 0 or ŵk = 0.

Proof of Lemma 4.3. With A given as in the statement of the lemma, we compute

gs = g exp(sA) = g


eis 0
0 In−1


and f (s) = F(gs) = a+2 Re(e−isŵ1) Im(e−is v̂1)+2

n
j=2 Re(ŵ j ) Im(v̂ j ). Direct computation

yields the stated values for f ′(0) and f ′′(0). �

Lemma 4.6. Let

A =

0 i 0
i 0 0
0 0 0

 ,

let (gs) be the one-parameter family described above, and let f (s) = F(gs). Then f ′(0) =

−2 Re(v̂1 ŵ2 + v̂2 ŵ1) and f ′′(0) = −4 Im(v̂1 ŵ2 + v̂2 ŵ1).

Remark 4.7. The indices 1 and 2 in Lemma 4.6 can be replaced by any distinct indices k and l
between 1 and n.

Corollary 4.8. If f ′(0) = f ′′(0) = 0 for all such one-parameter families (for each pair
k, l = 1, . . . , n, k ≠ l), then for each k ≠ l we have v̂k ŵl + v̂l ŵk = 0.

The proof of Lemma 4.6 proceeds along similar lines as that of Lemma 4.3.
Using these two lemmas, let us complete the proof of Proposition 4.1. Suppose that f ′(0) =

f ′′(0) = 0 for all the one-parameter families described in Lemmas 4.3 and 4.6, for some choice
of v̂ and ŵ in S2n−1. According to Corollary 4.5, either v̂1 or ŵ1 is equal to zero: without loss of
generality assume v̂1 = 0. By Corollary 4.8, either ŵ1 = 0 or v̂2 = v̂3 = · · · = v̂n = 0. Since all
entries of v̂ cannot be nonzero we must have ŵ1 = 0. The same argument can be applied with
the index 1 replaced by any index k to conclude that all of the entries of v̂ and ŵ are equal to
zero. But this obviously contradicts the fact that v̂, ŵ ∈ S2n−1. This contradiction implies that
( f ′(0), f ′′(0)) ≠ (0, 0) for at least one of the one-parameter families described above. From
here we see that either DF(g) or D2 F(g) is nonzero. As previously indicated, this fact suffices
to finish the proof of Proposition 4.1 in the Lagrangian case. �

Remark 4.9. An argument as above might also work in the case m < n with some additional
choices of one-parameter families (gs). In fact, we can proceed as above to define F with
summation only up to m. Then, with the previous paths (gs), if f (0) = f ′(0) = f ′′(0) = 0, we
can conclude that a = 0. So it would be enough to find a separate argument in the case a = 0.
Note that even though a ≠ 0 in the case of pairs (p, q) in A2 we cannot use this fact, since in
verifying Proposition 4.1 we referred to compactness.

On the other hand, for the case m = n there could also be a way of using a method similar to
that which we used for m < n by an appropriate splitting of the space of Lagrangian subspaces.
We have not pursued seriously either of these alternatives since we thought that presenting two
somewhat different methods might be useful in other occasions.
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5. Universal dimension estimates for vertical projections

The goal of this section is to prove Theorem 1.4.
First, we prove the upper bound on t in (1.6). The estimate t ≤ 2s follows from the local

1
2 -Hölder continuity of PW. To establish the estimate t ≤ s + 1 we compute

dimH PW(A) ≤ dimE PW(A)+ 1 ≤ dimE A + 1 ≤ dimH A + 1.

Here the first and last inequalities follow from the dimension comparison principle in Hn , while
the second inequality follows from the fact that the (nonlinear) mapping PW acting on R2n+1 is
locally Lipschitz and hence reduces Hausdorff dimension.

The inequality t ≤ 2n + 2 − m is obvious since 2n + 2 − m is the Heisenberg dimension of
the ambient space W containing the set PW(A). It remains to establish the inequality

t ≤
1
2
(s − m)+ n + 1. (5.1)

We use a covering argument similar to that used in the proof of Proposition 4.3 in [2]. The
projection PW(BH (p, r)) looks like the Cr2-vertical thickening of a (2n − m)-dimensional
algebraic set Z transverse to the vertical direction.

In the following lemma, we denote by Hp = {p ∗ (z, 0) : z ∈ R2n
} the maximal horizontal

affine subspace of Hn passing through the point p.

Lemma 5.1. Denoting Z := PW

BH (p, r) ∩ Hp


, we have PW(BH (p, r)) ⊆ NE (Z , Cr2),

where NE (Z , Cr2) denotes the Euclidean Cr2 neighborhood of Z in W.

The proof of this lemma is similar to that found in [2].

Lemma 5.2. The set NE (Z , Cr2) can be covered by Heisenberg balls BH (p j , r2)∩W, p j ∈W,
1 ≤ j ≤ N, where

N = O


1
r2

 
1
r

2n−m

= O


1

r2n+2−m


. (5.2)

Proof of Lemma 5.2. First we estimate the number of Euclidean balls of radius r2 needed to
cover NE (Z , Cr2). Since the Euclidean diameter of Z is . r , we need for each horizontal
direction O( 1

r ) Euclidean balls of radius r2. As W is spanned by 2n − m horizontal and
one vertical direction, this amounts to O( 1

r2n−m ) Euclidean balls of radius r2 needed to cover
NE (Z , Cr2).

Next, we verify how many Heisenberg balls of radius r2 (intersected with W) are needed to
cover one Euclidean ball of radius r2 (intersected with W). As BH (p j , r2) looks roughly like a
parallelepiped with horizontal edges of length O(r2) and vertical height O(r4) for small r , we
need O( 1

r2 ) Heisenberg balls of radius r2 to cover such a ball. (Compare Lemma 6.4.)
Taken together, these two estimates yield the quantity in (5.2). �

We now prove the indicated dimension estimate (5.1). Fix s′ > s and ϵ > 0 and cover
A with balls BH (pi , ri ) so that ri < ϵ and


i r s′

i < ϵ. Then PW(A) is covered by the sets
PW(BH (pi , ri )). By Lemma 5.2, the set PW(A) can be covered by balls BH (pi j , r2

i )∩W, where
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1 ≤ j ≤ Ni = O(rm−2n−2
i ). Let t ′ = 1

2 (s′ − m)+ n + 1. Then

Ht ′
H,ϵ2(PW(A)) .


i


j

(ri )
2t ′
=


i

Nir2t ′
i ≤ C


i

r2t ′+m−2n−2
i = C


i

r s′
i < Cϵ.

Letting ϵ → 0 gives Ht ′
H (PW(A)) = 0. Letting s′ → s (so t ′ → t) we conclude that

dimH PW(A) ≤ 1
2 (dimH A − m) + n + 1 as desired. This completes the proof of the upper

bound in (1.6).
Next, we turn to the lower bound in (1.6). We begin with the lower bound t ≥ 1

2 (s − m). The
argument is similar to that used in the proof of Proposition 4.7 in [2]. Our starting point is the
following sequence of lemmas, cf. Lemma 4.8 and related statements in the proof of Proposition
4.7 in [2].

Lemma 5.3. There exists C > 0 so that ∥a−1
∗ b ∗ a∥4H ≤ ∥b∥

4
H +C∥b∥2H whenever a, b ∈ Hn

satisfy ∥a∥H ≤ 1 and ∥b∥H ≤ 1.

Lemma 5.4. There exists C > 0 so that P−1
W (BH (q, r)∩W)∩ B ⊂ NH (q ∗V, C

√
r) whenever

q ∈W and 0 < r ≤ 1.

Here

B = BH (0, 1) (5.3)

denotes the unit ball in the metric dH on Hn , while NH (A, ϵ) denotes the ϵ-neighborhood of a
set A in (Hn, dH ).

Lemma 5.5. There exists an absolute constant C > 0 and N = O(r−m/2) points p j

contained in the fiber P−1
W (q) so that the family {BH (p j , C

√
r) : j = 1, . . . , N } covers

P−1
W (BH (q, r)) ∩ B.

Now let A ⊂ Hn be a Borel set; we claim that dimH PW(A) ≥ 1
2 (dimH A − m). Without

loss of generality we may assume that A is bounded, and (after a dilation) we may assume that
A ⊂ B where B is as in (5.3).

Fix now t ′ > t = dimH PW(A) and ϵ > 0 and let {BH (qi , ri )} be a family of balls with
qi ∈ W so that PW(A) ⊂


i BH (qi , ri ) and


i r t ′

i < ϵ. We can apply Lemma 5.5 to each
ball BH (qi , ri ), obtaining balls {BH (pi j , C

√
ri ) : 1 ≤ j ≤ Ni } with Ni = O(r−m/2

i ) so that
A ⊂


i, j BH (pi j , C

√
ri ). Then, with s′ = 2t ′ + m we find

i, j

(diam BH (pi j , C
√

ri ))
s′
≤ C


i, j

r s′/2
i ≤ C


i

Nir
s′/2
i

≤ C


i

r (s′−m)/2
i = C


i

r t ′
i < Cϵ.

Since ϵ can be made arbitrarily small, we conclude that s = dimH A ≤ s′ = 2t ′ + m. Letting
t ′→ t we conclude that s ≤ 2t + m as desired.

We now prove the remaining dimension lower bound t ≥ max{s−m−1, 2s−2n−m−2}. The
argument for this case is similar to that used in the proof of Proposition 4.9 in [2] and uses the
Dimension Comparison Principle for Hn together with a slicing theorem. However, in contrast
with the case considered in [2], we use here the Heisenberg slicing Theorem 1.5 instead of the
Euclidean slicing theorem. (We will prove Theorem 1.5 in the following section.)
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Let A ⊂ Hn be a Borel set and let V ∈ Gh(n, m), and recall that our goal is to prove
t ≥ max{s−m−1, 2s−2n−m−2}where s = dimH A and t = dimH PV⊥(A). We may assume
without loss of generality that s > m+2 (otherwise, the preceding lower bound t ≥ (s−m)/2 is
stronger). This estimate will follow from the Dimension Comparison Principle and the Euclidean
dimension estimate

dimE PV⊥(A) ≥ dimH A − m − 1. (5.4)

In order to prove (5.4), we make use of the fact that for a given V ∈ Gh(n, m), the set
{U ∈ Gh(n, m) : U⊥ ∩ V = {0}} is a non-empty open subset of Gh(n, m) and therefore of
positive µn,m measure. This observation, together with Theorem 1.5, allows us to choose for
small ε > 0 an element U ∈ Gh(n, m) and u ∈ U such that

1. πV⊥ |U⊥ : U
⊥
→ V⊥ is one-to-one, and

2. dimH (A ∩ U⊥u ) ≥ dimH A − m − ε.

For such a choice, the map PV⊥ |U⊥u : U
⊥
u → V⊥ is bijective. Surjectivity is obvious. To see that

the map is injective, note that points in U⊥u can be written in a unique way as (zU⊥ , t) ∗ (u, 0).
Then

PV⊥((zU⊥ , t) ∗ (u, 0)) = PV⊥((ζU⊥ , τ ) ∗ (u, 0)),

or, equivalently,

(πV⊥(zU⊥ + u), t + 2ω(zU⊥ , u)− 2ω(πV⊥(zU⊥ + u), πV (zU⊥ + u)))

= (πV⊥(ζU⊥ + u), τ + 2ω(ζU⊥ , u)− 2ω(πV⊥(ζU⊥ + u), πV (ζU⊥ + u))).

The latter equation implies that

πV⊥(zU⊥ + u) = πV⊥(ζU⊥ + u)

and thus

πV⊥(zU⊥) = πV⊥(ζU⊥).

Since πV⊥ |U⊥ is one-to-one, it follows that zU⊥ = ζU⊥ and then, by considering the second
component, also that t = τ . This proves that PV⊥ |U⊥u is bijective. In fact, it is locally bi-Lipschitz
with respect to the Euclidean metric dE . Indeed, consider the inverse

(PV⊥ |U⊥u )−1
: V⊥→ U⊥u , (z′, t ′) → (Z , T ).

We will in the following give an explicit formula for this inverse map from which it can be seen
that it is smooth, and thus local Lipschitz continuity with respect to the Euclidean metric follows.
From

PV⊥(Z , T ) = PV⊥(zU⊥ + u, t + 2ω(zU⊥ , u))
!
=(z′, t ′) ∈ V⊥,

it follows that

Z = (πV⊥ |U⊥)
−1(z′ − πV⊥(u))+ u

and

T = t ′ + 2ω(πV⊥(Z), πV (Z))
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= t ′ + 2ω

πV⊥((πV⊥ |U⊥)

−1(z′ − πV⊥(u))+ u), πV ((πV⊥ |U⊥)
−1

× (z′ − πV⊥(u))+ u)


Note that πV⊥ |U⊥ is linear, so its inverse (which exists as a map from V⊥ to U⊥ by assumption)
is also linear. It follows that the map

V⊥→ U⊥u , (z′, t ′) → (Z , T ),

which is given by the above formulas, is smooth and thus locally Lipschitz.
The desired dimension bound (5.4) now follows from the Dimension Comparison Principle

and our choice of U and u, as follows:

dimE PV⊥(A) ≥ dimE PV⊥(A ∩ U⊥u ) = dimE A ∩ U⊥u
≥ dimH A ∩ U⊥u − 1 = dimH A − m − ε − 1.

Letting ε→ 0 gives (5.4).
The proof of the universal lower bound for vertical Heisenberg projections can now be

completed using another application of the Dimension Comparison Principle, this time for
vertical subgroups:

dimH PW(A) ≥ max{dimH A − m − 1, 2(dimH A − m − 1)− (2n − m)}

= max{s − m − 1, 2s − 2n − m − 2}.

6. A slicing theorem in the Heisenberg group

The goal of this section is to prove Theorem 1.5 which computes the Hausdorff dimension of
the intersection of a set in the Heisenberg group with cosets of a generic vertical subgroup. We
also prove related statements on the dimensions of slices by cosets of vertical subgroups.

Let A ⊂ Hn be a Borel set with positive and finite measure in its Hausdorff dimension. Our
goal is to estimate the dimensions of the slices of A by cosets

V⊥u := V⊥ ∗ u, u ∈ V,

of a given vertical subgroup V⊥.
The universal upper bound dimH (A ∩ V⊥u ) ≤ dimH A − m is easily established for all V in

Gh(n, m) and Hm almost every u ∈ V. More difficult is the verification of the corresponding
lower estimate:

Hm({u ∈ V : dimH (A ∩ (V⊥ ∗ u)) ≥ dimH A − m}) > 0 for µn,m a.e. V . (6.1)

Here we will need to impose the restriction dimH A > m + 2 as postulated in the statement of
Theorem 1.5.

We begin this section with several auxiliary results which will enable us to prove (6.1). The
strategy is similar to that in the Euclidean case. First, we ‘slice’ a given Radon measure µ on Hn

with the cosets V⊥u for V ∈ Gh(n, m) and u ∈ V. We obtain measures µV,u on V⊥u , see (6.5).
We discuss properties of these measures µV,u ; in particular we show that if µ satisfies a growth
condition for s > m+2, then many µV,u have finite (σ −m)-energy, s > σ > m+2. This is the
content of Proposition 6.7 below. It allows us to use the measures µV,u in order to estimate the
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dimension of A ∩ V⊥u provided that µV,u ∈M(V⊥u ), in particular provided that µV,u is positive
for µn,m a.e. V ∈ Gh(n, m) and a positive Hm measure set of u ∈ V.

Our point of departure is the subsequent proposition.

Proposition 6.1. Let m ∈ {1, . . . , n} and s > m + 2. Assume that µ is a Radon measure on Hn

with compact support such that

µ(BH (p, r)) ≤ r s for all p ∈ Hn, r > 0. (6.2)

Then

PV♯µ≪ Hm
⌊V for µn,m almost every V ∈ Gh(n, m). (6.3)

Before beginning the proof of this result, we record the following corollary, which completes
the proof of Theorem 1.1.

Corollary 6.2. Let A ⊂ Hn be a Borel set with dimH A > m + 2. ThenHm(PV A) > 0 for µn,m
a.e. V ∈ Gh(n, m).

Proof. Fix s with m + 2 < s < dimH A. By Frostman’s lemma, there exists a positive Radon
measure µ supported on A satisfying µ(BH (p, r)) ≤ r s for all p ∈ Hn and r > 0. By
Proposition 6.1, PV♯µ≪ Hm

⌊V for µn,m a.e. V ∈ Gh(n, m). Since (PV♯µ)(PV A) = µ(A) > 0
the conclusion follows. �

As in the Euclidean case (see, for instance [16, Theorem 9.7]), the proof of Proposition 6.1
uses differentiation theory. But in contrast to that case, it is not possible in this setting to bound
the integral of the lower derivative by the energy integral. In order to remedy this, we have
imposed the growth condition (6.2) on µ instead of requiring finiteness of the s-energy.

We will employ a covering argument by balls together with (6.2) to ensure that the given
integral is bounded. To this end, we will need several covering results (Lemmas 6.3–6.6), similar
to the one found in [3], but for higher-dimensional Heisenberg groups. Variants of Lemmas 6.3
and 6.4 can also be found in [4].

Lemma 6.3. Let A ⊂ R2n+1 be bounded, let r > 0, let p ∈ R2n+1 and let p′ ∈ A. Then,
denoting by ∗ the group law in Hn and by + the Euclidean group law in R2n+1, we have

• p′ ∗ BE (p, r) ⊂ BE (p′ ∗ p, Cr) for some C depending only on diamE A, and
• if p′ ∗ p + p′′ ∈ p′ ∗ BE (p, r), then |π(p′′)| ≤ r .

Here as before π : Hn
→ R2n denotes the projection π(z, t) = z. The proof of Lemma 6.3 is

analogous to that in [3].

Lemma 6.4. Let A ⊂ R2n+1 be bounded. Then there exists a constant C depending only on n
and diamE A so that any Euclidean ball BE (p, r) with p ∈ A and 0 < r < 1 can be covered by
Heisenberg balls BH (p1, r), . . . , BH (pM , r) with M ≤ C/r .

The proof is essentially the same as that in [3]. Translate the center of the given Euclidean ball
to the origin via Heisenberg left translation. The translated set can be covered by parallelepipeds
whose side lengths are comparable to r , except for the ‘height’ (side length in t-direction) which
is comparable to r2. The number of parallelepipeds needed for such a covering can be estimated
by Lemma 6.3. Since each parallelepiped can be contained in a ball of radius comparable to r ,
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the result follows by applying another left translation and using the doubling property of the
Heisenberg group.

From Lemma 6.4 we quickly deduce the following covering theorem.

Lemma 6.5. Let b ≥ 0 and ρ0 > 1. Consider the set A = {z0 ∈ R2n
: |z0| ≤ b}. Then there

exists C(n, b, ρ0) > 0 such that for all 0 < r < 1 and z0 ∈ A the set

Cr (z0) := {(z, t) ∈ Hn
: |z − z0| ≤ r, |t | ≤ ρ0}

can be covered by balls BH (p1, r), . . . , BH (pK , r) with K ≤ C(n, b, ρ0)/r2.

Proof. Since Cr (z0) has height 2ρ0 it can be covered by at most 2ρ0/r cubes of side length
2r which are parallel to the coordinate axes. (Note that ρ0

r ≥ 1 by assumption.) Each of these
cubes is contained in a closed Euclidean ball with the same center and radius

√
2n + 1 r . By

Lemma 6.4 each of these balls Bi can be covered by at most C(n, b, ρ0)/r Heisenberg balls of
radius r , for some constant C(n, b, ρ0). The result follows. �

We will also need a covering result of the following type.

Lemma 6.6. There exists C > 0 such that for all 0 < r2 < ρ < 1 the set

Cr,ρ := {(z, t) ∈ Hn
: |z| ≤ r, |t | ≤ ρ}

can be covered by at most Cρ/r2 balls BH (p1, r), . . . , BH (pK , r).

Proof. The set Cr,ρ can be covered by K parallelepipeds of the form

B∞((0, ti ), r) := {(z, t) ∈ Hn
: |z| ≤ r, |t − ti | ≤ r2

}

with K ≤ 2ρ

r2 . (Note that ρ

r2 > 1 by assumption.) Since B∞((0, t), r) ⊂ BH ((0, t), 4√2r), an
application of the doubling property of Hn completes the proof. �

Proof of Proposition 6.1. We begin by observing for V ∈ Gh(n, m), u ∈ V and δ > 0 that

PV♯µ(B(u, δ)) = µ(P−1
V (B(u, δ))) = µ({p : |PV(p)− u| ≤ δ}).

The ball B(u, δ) ⊂ V can equivalently be seen as a ball with respect to Euclidean metric or with
respect to the Heisenberg metric as the two distances coincide on V. Using Fatou’s lemma and
the transformation formula


g d f♯µ =


(g ◦ f ) dµ for Borel maps and measures (see e.g. [16,

Theorem 1.19]), we compute
lim inf

δ→0
δ−m PV♯µ(B(u, δ)) dPV♯µu dµn,m V

≤ lim inf
δ→0

δ−m


µ({p : |PV(p)− PV(q)| ≤ δ}) dµq dµn,m V .

By the identity
µ({x : (x, y) ∈ A}) dνy =


ν({y : (x, y) ∈ A}) dµx

for a Borel set A and locally finite Borel measures µ and ν on separable metric spaces X and Y
(see, e.g., [16, Theorem 1.14]), it follows that

lim inf
δ→0

δ−m


µ{p : |PV(p)− PV(q)| ≤ δ} dµq dµn,m V
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= lim inf
δ→0

δ−m


µn,m({V : |PV(π(p))− PV(π(q))| ≤ δ}) dµq dµp

= lim inf
δ→0

δ−m


µn,m({V : |πV (π(p)− π(q))| ≤ δ}) dµq dµp

.

|π(p)− π(q)|−m dµq dµp,

where we applied Lemma 2.4 in the last line.
Note that instead of an energy integral of the measure µ with respect to the Heisenberg metric

dH , we have obtained the modified energy integral
|π(p)− π(q)|−m dµq dµp

as an upper bound. We have to make sure that this integral is finite. To this end, let R > 0 be large
enough so that sptµ ⊂ BH (0, R). Fix z ∈ R2n and 0 < λ < 1. The set {q ∈ Hn

: |π(q)−z| ≤ λ}

is a cylinder over the Euclidean ball BE (z, λ) with center z and radius λ in R2n . There exists
1 < h(R) <∞ such that

{q ∈ Hn
: |π(q)− z| ≤ λ} ∩ sptµ ⊂ BE (z, λ)× [−h(R), h(R)]. (6.4)

By Lemma 6.5 it follows that the cylinder, and thus also the set on the left hand side of (6.4),
can be covered by at most C(n, R)/λ2 Heisenberg balls of radius λ, where C(n, R) denotes a
constant independent of z and λ. Then µ({q ∈ Hn

: |π(q)− z| ≤ λ}) ≤ C(n, R)λs−2 and
|π(p)− z|−m dµq =


∞

0
µ({q : |π(q)− z| ≤ η−1/m

}) dη

=

 1

0
µ({q : |π(q)− z| ≤ η−1/m

}) dη

+


∞

1
µ({q : |π(q)− z| ≤ η−1/m

}) dη

≤ µ(Hn)+ C(n, R)


∞

1
η(2−s)/m dη

which is finite since s − 2 > m. We point out that the given upper bound is independent of z.
This result can be applied to conclude that

lim inf
δ→0

δ−m PV♯µ(B(u, δ)) dPV♯µu dµn,m V

is finite. Consequently, for µn,m a.e. V ∈ Gh(n, m), we find

lim inf
δ→0

δ−m PV♯µ(B(u, δ)) <∞ for PV♯µ a.e u ∈ V .

Then (6.3) follows from [16, Theorem 2.12 (3)]. �

By Proposition 6.1, the pushforward measure PV♯µ is absolutely continuous with respect to
the Hausdorff m-measureHm

⌊V for µn,m a.e. V ∈ Gh(n, m). For any such V andHm a.e. u ∈ V,
we can define slice measures µV,u as in [16, 10.1] with the properties that

sptµV,u ⊂ sptµ ∩ V⊥u (6.5)
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and 
V

µV,u(Hn) dHmu = µ(Hn) if PV♯µ≪ Hm
⌊V. (6.6)

More precisely, we start with a continuous nonnegative compactly supported function ϕ and
define a Radon measure νϕ by setting

νϕ(A) :=


A

ϕ dµ

for all Borel sets A ⊂ Hn . As explained in [16, p. 140], it follows that PV♯νϕ is a Radon measure
on V and that the Radon–Nikodym derivative D(PV♯νϕ,Hm, u) exists for Hm a.e. u ∈ V. In
other words, for Hm a.e. u ∈ V, the following limit exists:

µV,u(ϕ) := lim
δ↓0

(2δ)−m PV♯νϕ(B(u, δ)) = lim
δ↓0

(2δ)−m


PV−1(B(u,δ))

ϕ dµ.

In the above construction we first fixed ϕ and then defined µV,u(ϕ) by the derivative for Hm

a.e. u. The exceptional set of points u for which the limit does not exist will a priori depend on
the choice of ϕ. However by the separability of C+0 (Hn), one can eliminate the dependence on ϕ.
Thus we can define for Hm a.e. u ∈ V a nonnegative function on C+0 (Hn) by

ϕ → lim
δ↓0

(2δ)−m


PV−1(B(u,δ))

ϕ dµ.

This functional extends to a positive linear functional on C0(Hn) and it follows by the Riesz
representation theorem that for Hm a.e. u ∈ V there exists a Radon measure µV,u so that

ϕ dµV,u = lim
δ↓0

(2δ)−m


PV−1(B(u,δ))

ϕ dµ

for all ϕ ∈ C+0 (Hn). This gives immediately

sptµV,u ⊂ sptµ ∩ P−1
V (u) = sptµ ∩ V⊥u .

We call µV,u the slicing measure associated to the subspace V at the point u.
Because any lower semicontinuous function g : Hn

→ [0,∞] is the limit of a nondecreasing
sequence ϕi ∈ C+0 (Hn) it follows from the above identity that

g dµV,u ≤ lim inf
δ→0

(2δ)−m


PV−1(B(u,δ))

g dµ (6.7)

for Hm almost all u ∈ V.
Now let B be a Borel set in V and let ϕ ∈ C+0 (Hn). Theorem 2.12(2) in [16] implies that

B
D(PV♯νϕ,Hm, u) dHmu ≤ PV♯νϕ(B) =


P−1

V (B)

ϕ dµ (6.8)

with equality if PV♯νϕ ≪ Hm . The left-hand side of (6.8) is equal to
B

lim
δ↓0

(2δ)−m


PV−1(B(u,δ))

ϕ dµ dHmu =


B


ϕ dµV,u dHmu,
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so we conclude for any ϕ ∈ C+0 (Hn) and any Borel set B ⊂ V that
B


ϕ dµV,u dHmu ≤


P−1

V (B)

ϕ dµ (6.9)

with equality if PV♯νϕ ≪ Hm . Since

PV♯νϕ(A) =


P−1

V (A)

ϕ dµ ≤ ∥ϕ∥∞PV♯µ(A),

the absolute continuity statement PV♯µ≪ Hm
⌊V implies PV♯νϕ ≪ Hm

⌊V for all ϕ ∈ C+0 (Hn).
Hence, equality holds in (6.9) for any Borel set B in V and ϕ ∈ C+0 (Hn), provided that
PV♯µ≪ Hm

⌊V. We remind the reader that µn,m a.e. V is of this type.
Using again the fact that every lower semicontinuous function on Hn is a nondecreasing

limit of functions in C+0 (Hn) we conclude that (6.9) holds for functions which are merely lower
semicontinuous: for each lower semicontinuous g : Hn

→ [0,∞] we have
B


g dµV,u dHm(u) ≤


P−1

V (B)

g dµ (6.10)

for all Borel sets B ⊂ V, with equality if PV♯µ≪ Hm
⌊V . Inserting B = V and g ≡ 1 yields

µ(Hn) =


V

µV,u(Hn) dHmu if PV♯µ≪ Hm
⌊V. (6.11)

Next, we provide an analogue of Theorem 10.7 in [16].

Proposition 6.7. Let s and µ be as in Proposition 6.1 and µV,u be a slicing measure defined as
above. Then

V
Iσ−m(µV,u) dHmu dµn,m V <∞ (6.12)

for each σ satisfying m + 2 < σ < s.

Proof. To prove (6.12), we start by inserting the definition of the energy integral,

I :=


V
Iσ−m(µV,u) dHmu dµn,m V

=


V


dH (p, q)m−σ dµV,u p dµV,uq dHmu dµn,m V .

Inequality (6.7), Fatou’s lemma and Fubini’s theorem yield

I ≤ lim inf
δ→0

(2δ)−m


V


{p: |PV(p)−u|≤δ}

dH (p, q)m−σ dµp dµV,uq dHmu dµn,m V

= lim inf
δ→0

(2δ)−m


{u∈V: |PV(p)−u|≤δ}


dH (p, q)m−σ dµV,uq dHmu dµp dµn,m V .

Using inequality (6.10) for µn,m almost every V ∈ Gh(n, m) with B = {u : |PV(p) − u| ≤ δ},
this can be further estimated:

I ≤ lim inf
δ→0

(2δ)−m


{q: |PV(p)−PV(q)|≤δ}

dH (p, q)m−σ dµq dµp dµn,m V .
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Then by a second application of Fubini’s theorem,

I ≤ lim inf
δ→0

(2δ)−m


µn,m({V : |PV(p)− PV(q)| ≤ δ})dH (p, q)m−σ dµq dµp

.

|π(p)− π(q)|−mdH (p, q)m−σ dµq dµp.

Here we have again exploited the fact that PV can be seen as a Euclidean orthogonal projection
in the plane and we concluded by applying Lemma 2.4.

In contrast with the Euclidean case, we have obtained here yet another modified energy
integral, this time involving the kernel function

K (p) = |π(p)|−m
∥p∥m−σ

H ,

where ∥ · ∥H denotes the Korányi norm defined in (1.2). Observe that this kernel presents
a stronger singularity than does the kernel for the usual σ -energy, in view of the inequality
|π(p)| ≤ ∥p∥H . Nevertheless, we will still show that the integral in question is finite. In fact, we
claim that there exists a finite constant C = C(µ, s, σ ) such that

|π(p)− π(q)|−mdH (p, q)m−σ dµq ≤ C (6.13)

for all p ∈ spt(µ). Observe that the integrand in (6.13) is invariant under the left translation
L p−1 : Hn

→ Hn given by L p−1(q) = p−1
∗ q. As a result, it suffices to assume that p = 0. The

pushforward measure (L p−1)♯µ fulfills the same conditions as µ and has the same total measure.
By applying a suitable dilation we can further assume that ν is supported in the closed unit ball
B = BH (0, 1).

The preceding discussion indicates that it suffices to prove that
|π(q)|−m

∥q∥m−σ
H dνq ≤ C

for some C = C(s, σ, ν(Hn)) and any Radon measure ν on Hn supported in B and satisfying the
growth condition ν(BH (p, r)) ≤ r s for all p ∈ Hn and r > 0. To this end, we compute

|π(q)|−m
∥q∥m−σ

H dνq =

|ζ |−m(|ζ |4 + τ 2)

m−σ
4 dν(ζ, τ )

≈


{|ζ |2≥|τ |}

∥q∥−σ
H dν(ζ, τ )+


{|ζ |2<|τ |}

|ζ |−m
|τ |

m−σ
2 dν(ζ, τ ).

We consider separately the two integrals

J1 :=


{|ζ |2≥|τ |}

∥q∥−σ
H dν(ζ, τ ) and J2 :=


{|ζ |2<|τ |}

|ζ |−m
|τ |

m−σ
2 dν(ζ, τ ).

First,

J1 ≤


Hn
∥q∥−σ

H dνq =

∞

0
ν({q : ∥q∥−σ

H ≥ λ}) dλ =


∞

0
ν(BH (0, λ−

1
σ )) dλ

= σ

 1

0
ν(BH (0, r))r−σ−1 dr + σ


∞

1
ν(BH (0, r))r−σ−1 dr

≤ σ

 1

0
r s−σ−1 dr + ν(Hn)σ


∞

1
r−σ−1 dr =: C1(s, σ, ν(Hn)) <∞.
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Concerning the second integral, we decompose

{(ζ, τ ) ∈ B : 0 < |ζ |2 < |τ |} =

∞
i=0

{(ζ, τ ) ∈ B : 2−i−1
|τ | ≤ |ζ |2 < 2−i

|τ |}.

For 2−i−1
|τ | ≤ |ζ |2 < 2−i

|τ | we have |ζ |−1
≈ 2

i
2 |τ |−1/2. Hence

J2 ≈

∞
i=0


{2−i−1|τ |≤|ζ |2<2−i |τ |}

(2
i
2 |τ |−

1
2 )m
|τ |

m−σ
2 dν(ζ, τ )

=

∞
i=0


{2−i−1|τ |≤|ζ |2<2−i |τ |}

2
im
2 |τ |−

σ
2 dν(ζ, τ )

≈

∞
i, j=0

2−i− j−2
≤ |ζ |2 < 2−i− j

2− j−1
≤ |τ | < 2− j


2

im
2 (2− j )−

σ
2 dν(ζ, τ )

=

∞
i, j=0

2
im
2 +

σ j
2 ν(Ai, j ),

with

Ai, j = {(ζ, τ ) : 2−(i+ j+2)/2
≤ |ζ | < 2−(i+ j)/2, 2− j−1

≤ |τ | < 2− j
}.

We cover Ai, j by balls of a fixed radius comparable to 2−(i+ j)/2 and use the growth condition
on ν to estimate ν(Ai, j ) from above. We slightly enlarge the set Ai, j by taking the cylinder over
a ball instead of the cylinder over an annulus. The number of balls needed to cover this set can
be estimated by Lemma 6.6. Applying this result with ρ = 2− j and r = 2−(i+ j)/2 it follows that
Ai, j can be covered by at most C ρ

r2 = 2i C balls of radius 2−(i+ j)/2, where C is independent of
r and ρ. In this case, the growth condition on ν implies that

ν(Ai, j ) . 2i


2−(i+ j)/2
s
= 2i−s(i+ j)/2.

Therefore,

J2 .
∞

i, j=0

2
im
2 +

σ j
2 +i− s(i+ j)

2 =

∞
i, j=0

2
i

−s+(m+2)

2


2 j( σ−s

2 ) ≤ C2 <∞,

since s > m + 2 and s > σ . Note that C1 and C2 depend only on s, σ , m and diam(sptµ). This
proves (6.13) and hence (6.12). �

We are now prepared to prove Theorem 1.5.

Proof of Theorem 1.5. First, we prove the universal upper bound

dimH (A ∩ V⊥u ) ≤ dimH A − m (6.14)

for all V ∈ Gh(n, m) and Hm almost all u ∈ V. Since PV : (Hn, dH ) → V is Lipschitz, it
follows from [8, 2.10.25] that

Hs−m
H (A ∩ V⊥u ) dHmu =


Hs−m

H (A ∩ P−1
V (u)) dHmu . Hs

H (A).



Author's personal copy

602 Z.M. Balogh et al. / Advances in Mathematics 231 (2012) 569–604

If s > dimH A then Hs
H (A) = 0 and the integrand Hs−m

H (A ∩ V⊥u ) is zero for Hm almost every
u ∈ V. We conclude that dimH (A ∩ V⊥u ) ≤ s − m from which one obtains (6.14).

Next we prove (6.1). Denote s = dimH A > m + 2. Then there exists a measure µ which
fulfills the assumptions of Proposition 6.1. For V ∈ Gh(n, m) denote

EV = {u ∈ V : µV,u is defined and µV,u(Hn) > 0}.

For µn,m a.e. V ∈ Gh(n, m) we have by (6.11) and Proposition 6.1 that Hm(EV ) > 0,
and further by Proposition 6.7 that for any m + 2 < σ < s, Iσ−m(µV,u) is finite for Hm

a.e. u ∈ EV . Then since µV,u is supported on sptµ ∩ V⊥u ⊂ A ∩ V⊥u (see (6.5)), this implies
that dimH (A ∩ V⊥u ) ≥ σ − m for Hm a.e. u ∈ EV . As σ < s was chosen arbitrarily, this gives
dimH (A ∩ V⊥u ) ≥ dimH A − m for Hm a.e. u ∈ EV and completes the proof. �

We conclude this section with an alternate version of the slicing theorem which is closely
related to Theorem 1.5.

Theorem 6.8. Let A ⊂ Hn be a Borel set with 0 < Hs
H (A) <∞ for some s > m + 2. Then for

Hs
H a.e. p ∈ A we have dimH (A ∩ V⊥p ) = s − m for µn,m a.e. V ∈ Gh(n, m).

Note here that we have used the notation V⊥p for points p which are not necessarily in V.

Proof. First, we prove that dimH (A ∩ V⊥p ) ≥ s − m for µn,m a.e. V ∈ Gh(n, m) and Hs
H

a.e. p ∈ A. Suppose that this conclusion fails to be true. Then there exists σ with m+2 < σ < s
and a compact set F ⊂ A so that Hs

H (F) > 0 and µn,m({V : dimH (A ∩ V⊥p ) < σ − m})
is positive for all p ∈ F . By Frostman’s lemma, there exists a measure µ ∈ M(F) so that
µ(BH (p, r)) ≤ r s for all p ∈ Hn and all r > 0. By Fubini’s theorem (the measurability
assumption is easily verified in this setting due to the compactness of F),

µ({p : dimH (F ∩ V⊥p ) < σ − m}) dµn,m V

=


µn,m({V : dimH (F ∩ V⊥p ) < σ − m}) dµp > 0.

Hence there exists a compact set G ⊂ Gh(n, m) so that µn,m(G) > 0 and

µ({p : dimH (F ∩ V⊥p ) < σ − m}) > 0 for all V ∈ G.

By Proposition 6.1, (PV)♯µ≪ Hm for µn,m a.e. V , and so

Hm({u : dimH (F ∩ V⊥u ) < σ − m}) > 0 for µn,m a.e. V ∈ G. (6.15)

Here we used the elementary fact that V⊥p = V⊥u for every p so that PV(p) = u.
Now the slicing measure µV,u is defined for µn,m a.e. V ∈ Gh(n, m) and Hm a.e. u ∈ V as a

Radon measure on F ∩ V⊥u . By Proposition 6.7, 
V

Iσ−m(µV,u) dHmu dµn,m V <∞. (6.16)

But Iσ−m(µV,u) = ∞ when µV,u(Hn) > 0 and dimH (F ∩ V⊥u ) < σ − m. By (6.15) and (6.11)
G


V

Iσ−m(µV,u) dHmu dµn,m V = ∞,

which contradicts (6.16) and consequently finishes this part of the proof.



Author's personal copy

Z.M. Balogh et al. / Advances in Mathematics 231 (2012) 569–604 603

Next, we prove that dimH (A∩V⊥p ) ≤ s−m for µn,m a.e. V ∈ Gh(n, m) andHs
H a.e. p ∈ Hn .

The argument is a modification of the proof of [15, Lemma 6.5]. It suffices to show
∗

Hs−m
H (A \ C(p, r) ∩ V⊥p ) dµn,m V <∞

for all r > 0, where C(p, r) = {q : |π(p) − π(q)| ≤ r}. Left translating by p−1 and using the
fact that V⊥ is a normal subgroup, we may assume that p = 0.

For each k ∈ N choose balls Bk, j satisfying A \ C(0, r) ⊂


j Bk, j ⊂ Hn
\ C(0, r/2),

j (diam Bk, j )
s < Hs

H (A) + 1, and diam Bk, j < 1
k . Let pk, j be the center of Bk, j . Then

|π(pk, j )| >
r
2 . By Lemma 2.4,

µn,m({V ∈ Gh(n, m) : V⊥ ∩ Bk, j ≠ ∅}) ≤ µn,m({V : |πV (π(pk, j ))| ≤ diam Bk, j })

≤ C
r

2

−m
(diam Bk, j )

m .

Hence


diam(Bk, j ∩ V⊥p )s−m dµn,m V . r−m(diam Bk, j )
s . Applying Fatou’s lemma yields

∗

Hs−m
H (A \ C(0, r) ∩ V⊥) dµn,m V ≤


lim inf
k→∞


j

(diam Bk, j ∩ V⊥)s−m dµn,m V

≤ lim inf
k→∞


j


(diam Bk, j ∩ V⊥)s−m dµn,m V

. r−m


j

(diam Bk, j )
s
≤ r−m(Hs

H (A)+ 1)

which is finite by assumption. The proof is complete. �
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