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Abstract. By the classical Frobenius Theorem, a distribution is completely inte-
grable if and only if it is involutive. In this paper, we investigate the size of tangen-
cies of submanifolds with respect to a given non-involutive distribution. We provide

estimates for the size of tangencies in terms of its Hausdorff dimension. This gener-
alises earlier works by Derridj and the first author. Our results apply in the setting

of contact and symplectic structures as well as of Carnot groups. We illustrate the
sharpness of our estimates by a wide range of examples and round the paper off with
additional comments and open questions.

1. Introduction

The classical Frobenius Theorem [2, 20, 24] states that a C1 smooth distribution is com-
pletely integrable if and only if it is involutive. In this paper, we are going to investigate
non-involutive distributions D in terms of their degree of integrability. More precisely,
given a non-integrable distribution D of rank n on an (n +m)-dimensional manifold M
and an n-dimensional submanifold S ⊆ M , we shall investigate the size of the tangency
set of S with respect to D. This problem becomes of interest for Carnot-Carathéodory or
sub-Riemannian geometries [14] defined by bracket generating distributions D, in partic-
ular for contact manifolds [1], Carnot groups [7, 13, 17] or Hörmander vector fields [9, 19].
In all the works mentioned above, the tangency set of a given submanifold S with respect
to D was a pathological set where the methods of sub-Riemannian potential and geomet-
ric measure theory failed to work. It is therefore important to show that the tangency
set is a small or even a negligible set in terms of Hausdorff measure and dimension.

The main goal of the present paper is to prove an upper bound for the size of the
tangency set with respect to a general non-integrable distribution in terms of their Haus-
dorff dimension. Such statements have been shown earlier by the first author [3] and
subsequently applied in [5, 6, 8, 23] to develop the theory of minimal and area stationary
surfaces of the Heisenberg group. The result of [3] as well as a classical theorem of Derridj
[9] will follow as elegant (and rather straightforward) consequences of our main Theorem
1.3 below.

We shall begin with introducing the necessary notations to formulate our main result.
For notational simplicity, we shall assume that the ambient manifold M is the Euclidean
space Rn+m. Recall [20] that a Cr, r ∈ N, smooth distribution D of rank n on an
open set U ⊆ Rn+m is a Cr smooth assignment to each point z ∈ U of a linear n-
dimensional subspace D(z) � Tz(R

n+m). D is usually described either by n pointwise
linearly independent Cr smooth vector fields

(1.1) {X1, . . . ,Xn}
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such that {X1(z), . . . ,Xn(z)} forms a basis of D(z) for all z ∈ U or as the intersection of
the kernels of m linearly independent one-forms {ϑ1, . . . , ϑm} with Cr smooth coefficients
on U , i.e.

D = ker(ϑ1) ∩ . . . ∩ ker(ϑm).

Definition 1.1. Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m

and S ⊆ U a C1 smooth n-dimensional manifold. We call a point z ∈ S a tangency point
of S with respect to D if and only if Tz(S) = D(z). The set of such points is called the
tangency set, or, in short, the tangency, of S with respect to D and denoted by

τ(S,D) := {z ∈ S : Tz(S) = D(z)}.

The purpose of this paper is to give a general upper estimate of the Hausdorff dimension
dimH(τ(S,D)) of the tangency set τ(S,D).

Let us denote by G(n+m, k) the Grassmannian [18] of k-planes in Rn+m. The following
definition is crucial for the formulation of our main result.

Definition 1.2. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C1 smooth distribution of rank n
on an open set U ⊆ Rn+m. For 1 ≤ k ≤ n+m, we define

Ak := {z ∈ U : there exists X ∈ G(n+m, k) such that

ϑi
z|X = 0 and dϑi

z|X = 0 for all 1 ≤ i ≤ m}.

Clearly, the sets (Ak)k form a decreasing sequence: A1 ⊇ A2 ⊇ . . . ⊇ An+m. Note
that A1 = U due to the integrability of vector fields [2]. Furthermore, Al = ∅ for all
n+ 1 ≤ l ≤ n+m, since the contrary would imply rank(D) > n.

By the Hausdorff dimensions of the members of the sequence (Ak)k, one can control
the measure of integrability of the distribution D as formulated in our main

Theorem 1.3. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C1 smooth distribution of rank n
on an open set U ⊆ Rn+m, Ak defined as above, S ⊆ U an n-dimensional C2 smooth
manifold and τ(S,D) its tangency set with respect to D. Then

(1.2) dimH(τ(S,D)) ≤ max
1≤k≤n

{min{dimH(Ak \Ak+1), k}}.

The following example illustrates the sharpness of our theorem and shows that the
maximal possible Hausdorff dimension of a tangency set does not need to be integer.

Example 1.4. Let U := (0, 1)2 × (−1, 1) ⊆ R3 and define the distribution D of rank 2
on U as follows: Let C ⊆ (0, 1) denote a compact set of dimension s ∈ (0, 1) and consider
the set A := (0, 1) × C × {0} ⊆ U . A will serve as the ‘critical’ A2, which realises the
maximum in (1.2). By an application of Whitney decomposition and partition of unity
[16, Proposition 2.3.4], there exists a C∞ smooth function ϕ : R3 → R+

0 whose zero set
is precisely A. Define, for any z = (x, y, t) ∈ U , the real-valued function

f(x, y, t) :=

∫ x

0

ϕ(s, y, t) ds

as well as the C∞ smooth pointwise defined one-form ϑz := f(z)·dy − dt.
It is immediate to see that the corresponding distribution is pointwise defined by

D(z) = ker(ϑz) = span{∂x, ∂y + f(z)·∂t} and that dϑz = fx(z)·dx ∧ dy − ft(z)·dy ∧ dt.
Together with dϑz(∂x, ∂y + f(z)·∂t) = fx(z), we get

A2 = {z ∈ U : dϑ|ker(ϑ) = 0} = {z ∈ U : fx(z) = 0} = A.

Since A3 = ∅, this implies

(1.3) dimH(τ(S,D)) ≤ min{dimH(A2 \A3), 2} = 1 + dimH(C) = 1 + s

for any C2 smooth 2-dimensional manifold S ⊆ U .
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We also point out that the estimate (1.3) is sharp: Let S := {z ∈ U : t = 0}. Then

τ(S,D) = {z = (x, y, 0) : D(z) = span{∂x, ∂y}}

= {z = (x, y, 0) : f(x, y, 0) = 0} = A

by the definition of the function f and therefore dimH(τ(S,D)) = 1 + s.

In spite of its abstract appearance, the above result has sharp applications in several
cases of important distributions. It turns out that the sets Ak appearing on the right
side of (1.2) are large for small values of k. However, a sudden drop of the size of Ak can
occur at some critical value. And this critical value k0 is the one to maximise the right
side of (1.2). In particular, applying the above theorem, we obtain, in a rather elegant
way, a generalisation of a classical result of Derridj [9] stating that the set of tangencies of
hypersurfaces to distributions satisfying the Hörmander condition is negligible. Similarly,
the result of the first author [3] on the size of characteristic sets of surfaces in contact
manifolds (in particular in the Heisenberg group) follows directly from Theorem 1.3. Let
us mention that the C2 smoothness of S is a necessary assumption. We shall show in
Section 8 that for C1,α, 0 < α < 1, regular manifolds all control over the size of the
tangency set is lost in general.

The paper is organised as follows: In the second section, we introduce the notion of
the tangent space to a general subset of the Euclidean space and show that its algebraic
dimension controls the Hausdorff dimension of the set itself from above. Section 3 is
devoted to the proof of our main Theorem 1.3 above. In Section 4, we state and prove
a generalised version of Derridj’s Theorem [9]. Lower estimates for the size of tangencies
are presented in Section 5. In Section 6, we apply Theorem 1.3 to the important cases
of contact and symplectic structures and in Carnot groups. In particular, we obtain the
main result of [3] as a direct consequence. We investigate the sharpness of our main
theorem in Section 7. In the final Section 8, we discuss the sharpness of Theorem 1.3 in
terms of its regularity assumptions and round the article off with additional comments
and open questions.

2. Tangent space to a general set

Before turning our attention to the main statements of this paper, we state and prove
preliminary results, which will be useful in the sequel. In this direction, we start with the
following

Definition 2.1. Let A ⊆ Rn and x ∈ A. We define the set of tangent directions of A at
x as

Dirx(A) :=
{

v ∈ Sn−1 : ∃(xn) in A, xn → x, xn 6= x, such that xn−x
|xn−x| → v

}

.

In addition, we define the tangent space of A at x as Tanx(A) := span(Dirx(A)).

Proposition 2.2. Dirx(A) and Tanx(A) have natural properties: Let A,B ∈ Rn.

1) If x ∈ A ⊆ B then Dirx(A) ⊆ Dirx(B) and Tanx(A) � Tanx(B).
2) The following statements are equivalent:

a) x is an isolated point of A;
b) Dirx(A) = ∅;
c) Tanx(A) = {0}.

3) Let U ⊆ Rn be an open set, f : U → Rm a C1 smooth embedding, A ⊆ U and
x ∈ A. Then (Df(x))(Tanx(A)) = Tanf(x)(f(A)).

Proof. While 1) and 2) are obvious, 3) is slightly more intricate; we therefore only give
a proof of 3), assuming without loss of generality that x is not an isolated point of A.
To prove the inclusion (Df(x))(Tanx(A)) ⊆ Tanf(x)(f(A)) consider u ∈ Dirx(A) and a
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sequence (xn) in A with xn → x, xn 6= x and xn−x
|xn−x| → u. If (Df(x))(u) = 0 there is

nothing to prove. For the case (Df(x))(u) 6= 0 note that

f(xn) − f(x)

|xn − x|
=
f(xn) − f(x) − (Df(x))(xn − x)

|xn − x|
+ (Df(x))

(

xn − x

|xn − x|

)

converges to (Df(x))(u), which implies that

(2.1)
f(xn) − f(x)

|f(xn) − f(x)|
=

∣

∣

∣

∣

xn − x

f(xn) − f(x)

∣

∣

∣

∣

·
f(xn) − f(x)

|xn − x|
→

(Df(x))(u)

|(Df(x))(u)|
.

Therefore (Df(x))(u)
|(Df(x))(u)| ∈ Dirf(x)(f(A)), which yields the first inclusion.

For the opposite inclusion consider v ∈ Dirf(x)(f(A)) and a sequence (yn) in f(A),

yn → y, yn 6= y, such that yn−y
|yn−y| → v. Since yn ∈ f(A) for all n ∈ N and f is an

embedding, there exists a sequence (xn) in A, xn → x, xn 6= x, such that yn = f(xn) for
all n ∈ N and y = f(x). By choosing a subsequence, if necessary, we can assume that
(

xn−x
|xn−x|

)

converges to some u ∈ Sn−1. Then u ∈ Dirx(A) and (2.1) implies that

v = lim
n→∞

f(xn) − f(x)

|f(xn) − f(x)|
=

(Df(x))(u)

|(Df(x))(u)|
∈ span((Df(x))(Dirx(A))),

which shows the opposite inclusion. �

Remark 2.3. If the condition f to be an embedding in Proposition 2.2 3) is omitted, then
still (Df(x))(Tanx(A)) ⊆ Tanf(x)(f(A)).

We next estimate the Hausdorff dimension of a set A ⊆ Rn in terms of the algebraic
dimension of its tangent space. Before we can state the main result in this direction,
we need additional notation and the following lemma, which is a generalisation of [18,
Lemma 15.13].

Following [18] we denote by G(n, k) the Grassmannian of k-dimensional subspaces of
Rn, where 1 ≤ k ≤ n. For V ∈ G(n, k) we denote by PV : Rn → V the orthogonal
projection onto V and by QV = PV ⊥ : Rn → V ⊥ the orthogonal projection onto the
orthogonal complement V ⊥. G(n, k) is a compact metric space with the metric d(V,W ) =
‖PV −PW ‖, where ‖PV −PW ‖ stands for the operator norm of the linear map PV −PW :
Rn → Rn. The balls in this metric are denoted by B(V, r) for V ∈ G(n, k) and r > 0.
For x ∈ Rn and 0 < s < 1 we define the cone around V ∈ G(n, k) with vertex x as

X(x, V, s) := {y ∈ Rn : dist(y − x, V ) < s·|y − x|} = {y ∈ Rn : |QV (y − x)| < s·|y − x|}.

We recall [18] that a set A ⊆ Rn is called k-rectifiable if there exist subsets Ai ⊆ Rk

and Lipschitz maps fi : Ai → Rn, i ∈ N, such that

Hk

(

A \
∞
⋃

i=1

fi(Ai)

)

= 0.

With Hk(A), A ∈ Rn, we denote the k-dimensional Hausdorff measure [11] of A.
Note that the Ai can be replaced by Rk in the above definition, since there exist

Lipschitz extensions of the fi to the whole space Rk by Kirszbraun’s Theorem [12]. Note
also that, by definition, k-rectifiable sets have their Hausdorff dimension less than or equal
to k.

Lemma 2.4. Let A ⊆ Rn and 0 < s < 1. If for Hk-almost all x ∈ A there exist a linear
subspace W = W (x) ∈ G(n, n− k) and 0 < r = r(x) < 1 such that

(2.2) A ∩B(x, r) ∩X(x,W, s) = ∅,

then A is k-rectifiable.
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Remark 2.5. Note that if (2.2) holds for an r > 0, then also for all 0 < r′ ≤ r.

Remark 2.6. A similar statement is formulated in [18, Theorem 15.19] with the additional
assumption Hk(A) <∞.

Proof. We shall divide the part of A for which (2.2) holds into a countable collection of
subsets Aij , which will be Lipschitz images of suitable subsets of Rk: First note that by
the compactness of G(n, n− k) there is a number N = N(s) ∈ N and there are subspaces

Wi ∈ G(n, n− k), 1 ≤ i ≤ N , such that
⋃N

i=1B(Wi,
s
2 ) = G(n, n− k). Define

Aij := {x ∈ A : W (x) ∈ B(Wi,
s
2 ) and 1

j+1 ≤ r(x) < 1
j },

where 1 ≤ i ≤ N and j ∈ N. We can further subdivide the sets Aij into countably many
subsets Aijk ⊆ Aij such that

⋃

k Aijk = Aij and diam(Aijk) < 1
j+1 . Since the new family

is still countable, for notational simplicity we may assume that diam(Aij) <
1

j+1 .

Let x, y ∈ Aij . Then |y − x| < 1
j+1 ≤ r(x) and by (2.2) y /∈ X(x,W (x), s), or,

equivalently, |QW (x)(y − x)| ≥ s·|y − x|. Since PW +QW = id, we have

(PW (x) − PWi
+QW (x) −QWi

)(y − x) = 0

and thus |(QW (x) −QWi
)(y − x)| < s

2 ·|y − x|. Therefore, by the triangle inequality,

|QWi
(y − x)| ≥ |QW (x)(y − x)| − |(QW (x) −QWi

)(y − x)| ≥ s
2 ·|y − x|.

Hence QWi
|Aij

is one-to-one with Lipschitz inverse fi = (QWi
|Aij

)−1 with (uniform)

Lipschitz constant L ≤ 2
s . Since QWi

(Aij) lies on the k-plane W⊥
i and we have Aij =

fi(QWi
(Aij)), the set Aij – and therefore also A – is k-rectifiable. �

Lemma 2.4 will be of use in the proof of the following

Proposition 2.7. Let A ⊆ Rn and dim(Tanx(A)) ≤ k for Hk-almost all x ∈ A. Then A
is k-rectifiable. In particular dimH(A) ≤ k.

Proof. Fix 0 < s < 1. We will show that for Hk-almost all x ∈ A there exists a k-
dimensional subspace V = V (x) ∈ G(n, k) and 0 < r = r(x) <∞ such that

(A ∩B(x, r)) \X(x, V, s) = ∅.

Let x ∈ A. Without loss of generality, we may assume that dim(Tanx(A)) = k and set
V = V (x) = Tanx(A). Assume by contradiction that for all r > 0 there exists

xr ∈ (A ∩B(x, r)) \X(x, V, s).

Choosing rn = 1
n induces a sequence (xn), xn 6= x, xn → x, for which

xn ∈ (A ∩B(x, 1
n )) \X(x, V, s).

From xn /∈ X(x, V, s) follows d( xn−x
|xn−x| , V ) ≥ s for all n ∈ N. By choosing a subsequence,

if necessary, we find some v = limn→∞
xn−x
|xn−x| ∈ Tanx(A) for which d(v, V ) ≥ s. But this

implies v /∈ V , which contradicts the assumption v ∈ Tanx(A).
Now the claim of the proposition is an immediate consequence of Lemma 2.4 by setting

W (x) := V ⊥(x) for almost all x ∈ A. �

3. Proof of Theorem 1.3

Following up the discussion in the introduction, we are going to investigate the role,
the one-forms defining a distribution and their differentials play to control the size of
tangencies. These insights will enable us to prove our main theorem thereafter.
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In this direction, first note [20, Proposition 2.11.7] that the vector fields from (1.1) can
– after a change of the coordinates, if necessary – always be written in the form

(3.1) Xi(z) = ∂xi
+

m
∑

j=1

cij(z)·∂yj

for all z = (x, y) ∈ U ⊆ Rn⊕Rm, where {∂x1
, . . . , ∂xn

, ∂y1
, . . . , ∂ym

} denotes the standard
basis of Tz(R

n+m) = Tx(Rn) ⊕ Ty(Rm). The corresponding one-forms with D being the
intersection of their kernels are

(3.2) ϑj(z) :=

n
∑

i=1

cij(z)·dxi − dyj ,

1 ≤ j ≤ m, as can immediately be verified.
We call [20] a distribution D = span{X1, . . . ,Xn} of rank n on U ⊆ Rn+m involutive

if it is closed under the Lie bracket operation, i.e. if for any two vector fields Xi, Xj ,
1 ≤ i, j ≤ n, we have [Xi,Xj ](z) ∈ D(z) for all z ∈ U . In terms of one-forms [2,
Theorem 3.8], the distribution D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) is involutive if and only if
dϑi ∧ ϑ1 ∧ . . . ∧ ϑm = 0 for all 1 ≤ i ≤ m. Equivalently, according to [20, 2.11.12],
D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) is involutive if and only if there exist one-forms αij on U
such that

(3.3) dϑi =

m
∑

j=1

ϑj ∧ αij

for all 1 ≤ i ≤ m.
As already pointed out in the introduction, a C1 smooth distribution is completely

integrable if and only if it is involutive by virtue of Frobenius’ Theorem [2, 20, 24].
Although the latter fails in our context of non-involutive distributions, the tangency set
τ(S,D) from Definition 1.1 can be interpreted as a link to the involutive case in the sense
that integral manifolds consist exclusively of tangency points.

Towards an estimate of the size of tangency sets, we need two technical lemmas, the
first of which says, roughly speaking, that the differential of a form vanishes on the tangent
set of the vanishing set of the form itself.

Lemma 3.1. Let U ⊆ Rn be an open set and ω ∈ Ωk(U) a k-form with C1 coefficients
on U . If A ⊆ U and ω|A ≡ 0, then (dω)x|Tanx(A) = 0 for all x ∈ A.

Proof. We first prove the statement for zero-forms, i.e. for differentiable functions f : U →
R, vanishing on A. Let x ∈ A. Without loss of generality, we may assume Tanx(A) 6= {0}.
Consider v ∈ Dirx(A) and a sequence (xn) in A with xn → x, xn 6= x, and xn−x

|xn−x| → v.

Using f(xn) = f(x) + (df)x(x− xn) + o(|x− xn|) and f(xn) = f(x) = 0 for all n ∈ N, it
follows that

(df)x(v) = lim
n→∞

(df)x

(

xn − x

|xn − x|

)

= 0

and hence (df)x|Dirx(A) = 0. By the definition of Tanx(A) and since (df)x is linear, it
follows that (df)x|Tanx(A) = 0.

Now let us consider a k-form ω =
∑

1≤i1<...<ik≤n ai1...ik
dxi1 ∧ . . .∧dxik

∈ Ωk(U) with

differential dω =
∑

1≤i1<...<ik≤n dai1...ik
∧ dxi1 ∧ . . . ∧ dxik

. Recall that the condition

ω|A ≡ 0 is equivalent to ai1...ik
|A ≡ 0 for all indices 1 ≤ i1 < . . . ik ≤ n. Hence

dai1...ik
|Tanx(A) = 0 for all x ∈ A and for all indices 1 ≤ i1 < . . . < ik ≤ n. Now for

v1, . . . , vk+1 ∈ Tanx(A) and arbitrary indices 1 ≤ i1 < . . . < ik ≤ n we have

(dai1...ik
∧ dxi1 ∧ . . . ∧ dxik

)x(v1, . . . , vk+1) = 0,

which yields the claim. �
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Lemma 3.2. Let D = ker(ϑ1)∩ . . .∩ker(ϑm) be a C1 smooth distribution of rank n on an
open set U ⊆ Rn+m, S ⊆ U a C2 smooth n-dimensional manifold and let τ(S) = τ(S,D)
denote its tangency set with respect to D. Then (dϑi)z|Tanz(τ(S)) = 0 for all 1 ≤ i ≤ m
and all z ∈ τ(S).

Proof. Consider an open subset V ⊆ Rn and a C2 mapping f : V → Rm such that
Φ : V → Rn+m, Φ(x) = (x, f(x)), is a local parametrisation of S. Note that S =
Γf , where Γf ⊆ Rn+m denotes the graph of f and that Φ(x) ∈ τ(Γf ) if and only if
ϑi

Φ(x)|TΦ(x)(Γf ) = 0 for all 1 ≤ i ≤ m, which is equivalent to (Φ∗ϑi)x = 0 for all 1 ≤ i ≤ m.

Since Φ ∈ C2 we have that the Φ∗ϑi are one-forms on Rn with C1 coefficients and
Lemma 3.1 applies. Therefore Φ∗ϑi|τ(f) = 0 for all 1 ≤ i ≤ m, where τ(f) := Φ−1(τ(Γf )),

and d(Φ∗ϑi)x|Tanx(τ(f)) = (Φ∗ dϑi)x|Tanx(τ(f)) = 0 for all 1 ≤ i ≤ m and all x ∈ τ(f).
Now let x ∈ τ(f), which is equivalent to z := Φ(x) ∈ τ(Γf ) = τ(S). By means of

Proposition 2.2 3) we have Tanz(τ(S)) = TanΦ(x)(Φ(τ(f))) = (DΦ(x))(Tanx(τ(f))) and
therefore

(Φ∗ dϑi)x|Tanx(τ(f)) = 0 if and only if (dϑi)z|Tanz(τ(S)) = 0

for all 1 ≤ i ≤ m. �

Remark 3.3. Note that the C2 property of S is necessary to apply Lemma 3.1 and it
was also used in the equation d(Φ∗ϑi) = Φ∗ dϑi, which might not hold if Φ is less than
C2 smooth. If the assumption on C2 smoothness is replaced by mere C1 or even C1,α

smoothness, our results fail to hold, as we shall see in Section 8.

We observed that for a C2 smooth manifold S and a C1 smooth distribution D both the
defining one-forms ϑi are zero on τ(S,D) as well as their differentials vanish on Tanz(τ(S))
for z ∈ τ(S). This observation motivated the definition of the sets Ak from Definition
1.2.

After these preparations, we are now in position to prove our main result.

Proof of Theorem 1.3. Using the notation τk(S) := τ(S)∩ (Ak \Ak+1) for 1 ≤ k ≤ n, we
decompose τ(S) = τ(S,D) into suitable ‘pieces’:

(3.4) τ(S) = τ(S) ∩ [(A1 \A2) ∪ . . . ∪ (An−1 \An) ∪An] = τ1(S) ∪ . . . ∪ τn(S),

where τn(S) = τ(S) ∩ An since An+1 = ∅. We first show that dim(Tanz(τk(S))) ≤ k for
1 ≤ k ≤ n and z ∈ τk(S): Let us assume by contradiction that there exist 1 ≤ k ≤ n
and z ∈ τk(S) such that dim(Tanz(τk(S))) ≥ k + 1. Then dim(Tanz(τ(S)) ≥ k + 1 for
Tanz(τk(S)) � Tanz(τ(S)) by Proposition 2.2 1). Now choosing X := Tanz(τ(S)) and
using (dϑi)z|X = 0 for 1 ≤ i ≤ m by Lemma 3.2 yields z ∈ Ak+1, which is a contradiction
to the initial choice of z. Applying Proposition 2.7, it follows that dimH(τk(S)) ≤ k
for 1 ≤ k ≤ n. Therefore, as a consequence of the finite stability property [11] of the
Hausdorff dimension, we get

dimH(τ(S)) ≤ max
1≤k≤n

{dimH(τk(S))},

which implies the claim. �

Remark 3.4. We point out that an even stronger version of our main theorem holds: The
range of k at the right side of (1.2) can be restricted to ⌊n+m

m+1 ⌋ ≤ k ≤ n as a consequence

of the following Proposition. By ⌊r⌋, r ∈ R, we denote the integer part of r, i.e. the
greatest integer such that ⌊r⌋ ≤ r.

Proposition 3.5. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C1 smooth distribution of rank
n on an open set U ⊆ Rn+m and Ak, k ∈ N, defined as in Definition 1.2. Then Ak = U
for all 1 ≤ k ≤ ⌊n+m

m+1 ⌋.
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Proof. We shall show the assertion by induction on k. Clearly, A1 = U by the integrability
of vector fields [2]. Now let us assume that Ak = U for some 1 ≤ k ≤ ⌊ n−1

m+1⌋ and consider

z ∈ U . Then there exists X ∈ G(n + m, k) such that ϑi
z|X = 0 and dϑi

z|X = 0 for
1 ≤ i ≤ m. Consider a basis B = {e1, . . . , ek} of X and let B′ = {e′k+1, . . . , e

′
n} be a

completion of B to a basis of D(z).
In order to show z ∈ Ak+1, we shall find ek+1 = ak+1 ·e

′
k+1 + . . .+ an ·e

′
n ∈ D(z), such

that

(3.5) dϑi(el, ek+1) = 0

for all 1 ≤ l ≤ k and 1 ≤ i ≤ m. First note that ek+1 is only determined up to its length.
Therefore, we may assume without loss of generality that ak+1 = 1. Hence, condition
(3.5) yields a system of k·m equations with n− k − 1 unknowns, which is solvable, since
k ≤ ⌊ n−1

m+1⌋ is equivalent to k·m ≤ n− k− 1. Thus, X ′ := span{e1, . . . , ek+1} is a (k+ 1)-

dimensional linear subspace of Rn+1 such that dϑz|X′ = 0, which immediately implies
that z ∈ Ak+1. �

4. Generalisation of Derridj’s Theorem

As a first application of our main theorem in the context of Hörmander distributions
[15], we are going to present a generalisation of Derridj’s Theorem [9] on the size of
tangencies. In this direction, we shall start with the following

Definition 4.1. Let D = span{X1, . . . ,Xn} be a C∞ smooth distribution of rank n on
an open set U ⊆ Rn+m. We say that D fulfils the Hörmander condition if for any point
z ∈ U , the vectors generated by the iterated brackets

Xi1(z), [Xi1 ,Xi2 ](z), [Xi1 , [Xi2 ,Xi3 ]](z), . . . ,

where 1 ≤ ik ≤ n for any k ∈ N, span the whole space Tz(R
n+m).

Remark 4.2. Even though not very often used in literature, one may extend the notion
of being Hörmander to merely Cr, r ∈ N, distributions. Since in this case the interlaced
brackets are only defined up to order r + 1, one has to require already the latter to span
Tz(R

n+m) for all z ∈ U .

Before stating the main theorem of this section, we shall state and prove the following
proposition on the size of tangencies in the context of a Hörmander distribution. We
shall also generalise the notion of the tangency set to the needs of the respective theorem.

Proposition 4.3. Let D = span{X1, . . . ,Xn} = ker(ϑ1)∩ . . .∩ ker(ϑm) be a C∞ smooth
distribution of rank n on an open set U ⊆ Rn+m that fulfils the Hörmander condition,
S ⊆ U a C2 smooth n-dimensional manifold and τ(S) = τ(S,D) its tangency set with
respect to D. Then dimH(τ(S)) ≤ n− 1.

Proof. Using the decomposition of τ(S) according to (3.4), it is enough to show that
dimH(τn(S)) ≤ n− 1, which we shall do by ‘stratifying’ τn(S) according to the pointwise
‘degree of involutivity’: Define, for k ∈ N, the sets

Bk := {z ∈ τn(S) : [Xi1 , [Xi2 , . . . , [Xij−1
,Xij

] . . .]](z) ∈ D(z)

for all 1 ≤ j ≤ k and all 1 ≤ i1, . . . , ij ≤ n}

and note that the Bk form a decreasing sequence in the sense τn(S) = B1 ⊇ B2 ⊇ . . ..
Therefore, τn(S) can be decomposed as

τn(S) =

∞
⋃

k=1

(Bk \Bk+1) ∪
∞
⋂

k=1

Bk.

8



Since
⋂∞

k=1Bk = ∅ by the Hörmander condition on D and using the countable stability
property [11] of the Hausdorff dimension, it is thus enough to show dimH(Bk) ≤ n−1 for
all k ∈ N.

Let us assume that there exists k ∈ N such that dimH(Bk \Bk+1) > n− 1. Then there
exists z ∈ Bk \Bk+1 such that dim(Tanz(Bk \Bk+1)) = n by Proposition 2.7. Applying
Proposition 2.2 1) to the inclusion Bk \Bk+1 ⊆ S and taking into account their respective
dimensions, we get

(4.1) Tanz(Bk \Bk+1) = Tanz(S) = Tz(S).

Next consider the multi-index i := (i1, . . . , ik), where 1 ≤ i1, . . . , ik ≤ n, and denote
by Xi the vector field [Xi1 , [Xi2 , . . . , [Xik−1

,Xik
] . . .]]. Note that Xi(z) ∈ D(z), which is

equivalent to ϑi
z(Xi(z)) = 0 for all 1 ≤ i ≤ m. Also consider any 1 ≤ i0 ≤ n and the

vector field Xi0 ∈ D. Using ϑi(Xi0) ≡ 0 for all 1 ≤ i ≤ m and z ∈ An, we get

ϑi
z([Xi0 ,Xi]) = Xi0(z)(ϑ

i
z(Xi)) −Xi(z)(ϑ

i
z(Xi0)) − (dϑi)z(Xi0(z),Xi(z))

= Xi0(z)(ϑ
i(Xi)) = d(ϑi(Xi))z(Xi0(z))

for all 1 ≤ i ≤ m. Next observe that ϑi(Xi)|Bk\Bk+1
≡ 0 since Xi(z

′) ∈ D(z′) for
all z′ ∈ Bk \ Bk+1 ⊆ τn(S). According to Lemma 3.1 and using (4.1), this yields
d(ϑi(Xi))z|Tz(S) = 0 for 1 ≤ i ≤ m and therewith d(ϑi(Xi))z(Xi0(z)) = 0 for 1 ≤ i ≤ m.

Hence ϑi
z([Xi0 ,Xi](z)) = 0 for all 1 ≤ i ≤ n and thus

[Xi0 ,Xi] = [Xi0 , [Xi1 , . . . , [Xik−1
,Xik

] . . .]] ∈ D(z).

But this implies, since both i0 and i may be chosen arbitrarily, z ∈ Bk+1, which is
contradictory to the initial choice of z. �

Definition 4.4. Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m

and S ⊆ U a C1 smooth (n+ r)-dimensional manifold, where 0 ≤ r ≤ m. Then we define

τ̃(S,D) := {z ∈ S : Tz(S) ⊇ D(z)}.

Note that for r = 0 we have τ̃(S,D) = τ(S,D) and that the following theorem reduces
to Proposition 4.3 in this case.

Theorem 4.5. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) = span{X1, . . . ,Xn} be a C∞ smooth
distribution of rank n on an open set U ⊆ Rn+m that fulfils the Hörmander condition.
Let further S ⊆ U be an (n+ r)-dimensional C2 smooth manifold, where 0 ≤ r < m, and
τ̃(S,D) its tangency set with respect to D. Then

dimH(τ̃(S,D)) ≤ n+ r − 1.

Proof. The idea of the proof is to reduce the statement to Proposition 4.3. To do so let
F = {Y1, . . . , Yn+r} be a C2 smooth frame of T (S), i.e. a C2 smooth distribution of rank
n+ r on S such that span{Y1(z), . . . , Yn+r(z)} = Tz(S) for all z ∈ S. Then there exist a

neighbourhood U ′ of S and an extension F̂ = {Ŷ1, . . . , Ŷn+r} of F on U ′, i.e. F̂ |S = F ,

such that F̂(z) := {Ŷ1(z), . . . , Ŷn+r(z)} is linearly independent for all z ∈ U ′. Without
loss of generality, we may assume that U ′ = U .

We will next complete D to a C1 smooth distribution D̃ of rank n+r by adding r vector
fields of F̂ to D using the following iterative construction: For 1 ≤ k ≤ n + r and fixed
z0 ∈ U define Dk(z0) := span{Dk−1(z0), Ŷk(z0)}, where D0 := D. Note that if Ŷk(z0) /∈

Dk−1(z0) there exists a neighbourhood U ′ of z0 such that Ŷk(z) /∈ Dk−1(z) for all z ∈ U ′,

since Dk−1 and Ŷk are continuous. We may again assume that U ′ = U for otherwise we
can cover S by countably many such neighbourhoods. Hence the construction of the Dk

does not depend on U , which implies that the Dk are actually C2 smooth distributions
on U . Observe that there exists a (least) k0, r ≤ k0 ≤ n+r, such that rank(Dk0

) = n+r.
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Define the distribution D̃ := Dk0
= span{D, Ŷk1

, . . . , Ŷkr
}, 1 ≤ k1 < . . . < kr ≤ n + r,

and observe that D̃ fulfils the Hörmander condition.
The final step towards the completion of the proof is the observance that the equality

τ̃(S,D) = τ(S, D̃) holds: For the first inclusion consider z ∈ τ̃(S,D). Then Tz(S) ⊇ D(z)

and, since span{Ŷk1
(z), . . . , Ŷkr

(z)} ⊆ Tz(S), we get Tz(S) = D̃(z). For the opposite

inclusion let z ∈ τ(S, D̃). Then Tz(S) = D̃(z) and, since D(z) ⊆ D̃(z), Tz(S) ⊇ D(z).

Now the claim follows immediately from Proposition 4.3, applied to D̃ and S. �

The following theorem of Derridj [9, Theorem 1] is an immediate consequence of The-
orem 4.5.

Corollary 4.6 (Derridj’s Theorem). Let Ω ⊆ Rn be an open set with regular, i.e. C∞

smooth, boundary and let D = {X1, . . . ,Xr} be a system of vector fields with C∞ coeffi-
cients on a neighbourhood Ω′ of Ω that fulfils the Hörmander condition. Then

Hn−1(τ̃(∂Ω,D)) = 0,

where τ̃(∂Ω,D) denotes the (closed) tangency set of the boundary ∂Ω of Ω with respect to
D.

Remark 4.7. Note that our Theorem 4.5 is stronger than Derridj’s Theorem in at least
three directions: First, Theorem 4.5 does not only hold for one-codimensional manifolds
or boundaries respectively. Secondly, our theorem estimates the size of the tangency
set not only in terms of its Hausdorff measure, but rather with regard to its Hausdorff
dimension. And thirdly, our version is not restricted to bounded surfaces.

5. Lower estimates

In the sequel, we are going to provide a lower bound for the maximal size of the tangency
set with respect to a given distribution. Since this lower bound coincides surprisingly often
with the upper bound from Theorem 1.3, the latter is in fact sharp in many cases. We
are going to provide examples featuring this coincidence in Section 6. A useful notion to
get a lower estimate is introduced in the following

Definition 5.1. Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m

and z ∈ U . Then we define the involutivity index of D at z as

ιz(D) := max{dim(S′) : S′ ∈ S(z) and Tz′(S′) ⊆ D(z′) for all z′ ∈ S′},

where S(z) denotes the collection of all C2 smooth submanifolds of U passing through z.
Furthermore, we define the involutivity index of D as

ι(D) := max{ιz(D) : z ∈ U}.

Combining Theorem 1.3, or rather its stronger version according to Remark 3.4, with
the involutivity index, we get the following two-sided estimate for the size of tangencies.

Theorem 5.2. Let D = ker(ϑ1)∩ . . .∩ker(ϑm) be a C1 smooth distribution of rank n on
an open set U ⊆ Rn+m, ι(D) its involutivity index and Ak defined as in Definition 1.2.
Then there exists a C2 smooth n-dimensional manifold S ⊆ U such that

(5.1) ι(D) ≤ dimH(τ(S,D)) ≤ max
⌊n+m

m+1 ⌋≤k≤n
{min{dimH(Ak \Ak+1), k}}.

Proof. Theorem 1.3 already asserts the second inequality for any C2 smooth n-dimen-
sional manifold S ⊆ U . It is therefore enough to construct a manifold S ⊆ U with the
required properties that fulfils the left inequality. In this direction, let z ∈ U such that
k := ιz(D) = ι(D) and let S′ ∈ S(z) be a C2 smooth k-dimensional manifold passing
through z such that T (S′) ⊆ D (which exists by the definition of ιz(D)). Consider
k pointwise linearly independent vector fields {Y1, . . . , Yk} on S′ that span the local
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subdistribution T (S′) ⊆ D, i.e. such that span{Y1(v), . . . , Yk(v)} = Tv(S′) holds for all
v ∈ S′. Denote by {ϕ1(t), . . . , ϕk(t)} the local flows of {Y1, . . . , Yk} at z and recall that
ϕi(t) ◦ϕj(s) = ϕj(s) ◦ϕi(t) for 1 ≤ i, j ≤ k, whenever the composed diffeomorphisms are
defined.

We next extend {Y1, . . . , Yk} to a system {Y1, . . . , Yk, Yk+1, . . . , Yn} that spans the
whole subbundle D|S′ . Observe that, for a suitable choice of ε, ϕ : (−ε, ε)k → U ,
ϕ(t1, . . . , tk) = (ϕ1(t1) ◦ . . . ◦ϕk(tk))(z), is a local parametrisation of S′ and the mapping
ψ : (−ε, ε)n → U , defined by

ψ(t1, . . . , tn) := tk+1 ·Yk+1(ϕ(t1, . . . , tk)) + . . .+ tn ·Yn(ϕ(t1, . . . , tk)),

is an embedding into U for which Tv(Im(ψ)) = D(v) for all v ∈ Im(ϕ). This shows that
Im(ϕ) ⊆ τ(Im(ψ),D) and hence ιz(D) ≤ dimH(τ(Im(ψ),D)). Since S := Im(ψ) is a C2

smooth manifold in U and ιz(D) = ι(D), the claim follows. �

Interestingly, an arbitrary one-codimensional distribution D contains, at least on an
open subset, an involutive subdistribution D′ of rank roughly equal to half the dimension
of the ambient space. The rank of D′ can then be used as a lower bound for ι(D).

Before stating and proving the respective theorem, we shall define the notion of the
rank of a two-form as follows.

Definition 5.3. Let ω be a C1 smooth two-form on an open set U ⊆ Rn+m. Then the
rank of ω is

rank(ω) := min{i ∈ N : (dω)i ≡ 0 on U}.

Note that the rank of a two-form may decrease when restricting U . However, it is
lower semicontinuous on U .

Theorem 5.4. Let D = ker(ϑ) be a C1 smooth distribution of rank n on an open set
U ⊆ Rn+1. Then there exists an open set U ′ ⊆ U and an involutive subdistribution D′ of
D on U ′ of rank(D′) = ⌊n+1

2 ⌋.

Proof. We shall show the existence of D′ using Sternberg’s version of Darboux’ Theorem
[24]. We point out that [24] assumes C∞ smoothness of D. However, the assertion still
holds for mere C1 smoothness, as the reader may verify. Let p := rank(dϑ) and consider
z ∈ U such that (dϑ)p

z 6= 0. Observe that (dϑ)p 6= 0 on a whole neighbourhood of z.
Let us first assume that there exists a neighbourhood U ′ ⊆ U of z such that (dϑ)p 6= 0

but ϑ∧ (dϑ)p ≡ 0 on U ′. Hence, according to Darboux’ Theorem, there exist coordinates
x1, . . . , xp, y1, . . . , yp, xp+1, . . . , xn+1−p on U ′ such that ϑ is diffeomorphic to the standard
form

ϑ0 :=

p
∑

i=1

xi ·dyi

on U ′. Observe that

D′
0 := span{∂x1

, . . . , ∂xn+1−p
}

is an involutive subdistribution of D0 := ker(ϑ0) of rank n + 1 − p. Also note that,
since (dϑ)p is a non-vanishing 2p-form on U ′, we have p ≤ ⌊n+1

2 ⌋. Since the involutivity
property of a distribution is preserved under diffeomorphisms, this yields the existence of
the desired subdistribution.

If, on the other hand, there is no neighbourhood of z on which ϑ ∧ (dϑ)p ≡ 0, there
exist z′ ∈ U and a neighbourhood U ′ ⊆ U of z′ on which ϑ ∧ (dϑ)p 6= 0. Now using
the same arguments as above with the standard form ϑ0 :=

∑p
i=1 xi ·dyi + xp+1, we get

the involutive subdistribution D′
0 := span{∂x1

, . . . , ∂xp
, ∂xp+2

, . . . , ∂xn+1−p
} of rank n− p.

Since in this case p ≤ ⌊n
2 ⌋, the existence of D′ follows likewise. �
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As an immediate consequence of Theorem 5.4 in combination with Frobenius’ Theorem
[2, 20, 24], we get

Corollary 5.5. Let D = ker(ϑ) be a C1 smooth distribution of rank n on an open set
U ⊆ Rn+1 and ι(D) its involutivity index. Then

ι(D) ≥ ⌊n+1
2 ⌋.

Remark 5.6. Theorem 5.4 shows that it makes sense to take k ≥ ⌊n+m
m+1 ⌋ in the statement

of Theorem 5.2 in the case when m = 1. We do not know, however, whether a similar
statement to Theorem 5.4 holds for arbitrary m ∈ N.

6. Applications to contact and symplectic structures

Reviving the spirit of Section 4, we are going to illustrate the usefulness of our main
Theorem 1.3 in terms of more specific applications in this section. Attempting to provide
a wide variety of interesting and important examples, we shall investigate the cases of
contact and symplectic structures along with distributions on Carnot groups, where the
latter will be represented by the Heisenberg and the Engel groups. We will be able to
recapture a result by the first author [3] in an elegant and straightforward way. For
technical reasons, the notion of vanishing sets, earlier used by the second author [22],
turns out to be useful in this context.

We start with the following

Definition 6.1. Let U ⊆ Rn+m be an open set and let η be a k-form on U . Then we
define the vanishing set of η, i.e. the collection of points z ∈ U at which η is (identically)
zero as

V (η) := {z ∈ U : ηz(v1, . . . , vk) = 0 for all vi ∈ Tz(R
n+m)}.

Let further D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C0 distribution of rank n on U . Then, for
s ∈ N0, we define the s-vanishing set, or just vanishing set, with respect to D as

Vs :=
m
⋂

i1,...,is=1

V (ϑ1 ∧ . . . ∧ ϑm ∧ dϑi1 ∧ . . . ∧ dϑis).

Remark 6.2. Let D be a C0 distribution as defined above and Vs, s ∈ N0, the correspond-
ing vanishing sets. Then the following holds, as may easily be verified.

1) Vs is a closed subset of U for any s ∈ N0.
2) We have V0 = ∅ and Vs = U , whenever s > n

2 .

3) The vanishing sets Vs, 1 ≤ s ≤ ⌊n+1
2 ⌋, form a monotonic sequence in the sense

that V1 ⊆ V2 ⊆ . . . ⊆ V⌊n−1
2 ⌋ ⊆ V⌊n+1

2 ⌋ = U .

4) D is involutive if and only if V1 = U ; see above or [2, Theorem 3.8].

The usefulness of the vanishing sets for our purposes is founded in their relationship
with the sets Ak as follows.

Proposition 6.3. 1) Let D = ker(ϑ1)∩ . . .∩ker(ϑm) be a C1 smooth distribution of rank
n on an open set U ⊆ Rn+m and Ak, 1 ≤ k ≤ n+m, as well as Vs, s ∈ N0, be defined as
above. Then

An−s+1 ⊆ Vs

for all 1 ≤ s ≤ n.
2) Let furthermore S ⊆ U be an n-dimensional C2 smooth manifold on U and let

τ(S) = τ(S,D) denote its tangency set with respect to D. Then

dimH(τ(S \ Vs)) ≤ n− s

for all 1 ≤ s ≤ n. In particular dimH(τ(S)) ≤ n− s for any S ⊆ U \ Vs.
12



Note that both assertions are trivially fulfilled for ⌊n+1
2 ⌋ ≤ s ≤ n.

Proof. 1) Consider z ∈ An−s+1 and X ∈ G(n + m,n − s + 1) such that ϑi
z|X = 0 and

dϑi
z|X = 0 for all 1 ≤ i ≤ m. Let B = {e1, . . . , en−s+1} denote a basis of X and

let B′ = {en−s+2, . . . , en+m} be a completion of B to a basis of Rn+m. Observe that
ϑ1 ∧ . . . ∧ ϑm ∧ dϑi1 ∧ . . . ∧ dϑis(el1 , . . . , elm+2s

) is a sum of products of type

(6.1) ±ϑ1(el1)·. . .·ϑ
m(elm)·dϑi1(el1 , . . . , elm+2s

)·. . .·dϑis(elm+2s−1
, elm+2s

),

where (l1, . . . , lm+2s) is a permutation of (1, . . . ,m+ 2s). From card(B′
X) = m+ s− 1 it

follows that any product of type (6.1) contains at least s+1 arguments from BX . Hence,
at least one factor ϑi or dϑi has arguments exclusively from X and is zero therefore. Thus
z ∈ Vs.

2) Without loss of generality, we may assume that S ⊆ U \ Vs. Using the notations
from the proof of Theorem 1.3, we observe that the inclusions

τk(S) = τ(S) ∩ (Ak \Ak+1) ⊆ Ak ⊆ An−s+1 ⊆ Vs

hold for any n − s + 1 ≤ k ≤ n + m. Together with the inclusion τk(S) ⊆ S ⊆ U \ Vs,
this implies that τk(S) ⊆ Vs ∩ (U \ Vs) = ∅ for any n − s + 1 ≤ k ≤ n + m. Therefore
τ(S) = τ1(S) ∪ . . . ∪ τn−s(S).

Now the inequalities dimH(τk(S)) ≤ k for 1 ≤ k ≤ n−s from the proof of Theorem 1.3
together with the finite stability property [11] of the Hausdorff dimension imply the
claim. �

We are now able to apply our considerations in the following examples.

Example 6.4. Let ξ be a contact structure on an open set U ⊆ R2n+1, i.e. a distribution
D of codimension one that locally is the kernel of a contact form. Recall that a contact
form η on U is a one-form such that η ∧ (dη)n is a volume form on U , which means that
Vn = ∅. Therefore An+1 = ∅ by Proposition 6.3 1), such that Theorem 1.3 implies that
dimH(τ(S,D)) ≤ n for any C2 smooth hypersurface S ⊆ U .

Example 6.5. Consider the Heisenberg group Hn with underlying space R2n+1 and
its points denoted by z = (x, y, t) ∈ Rn × Rn × R along with the so-called horizontal
distribution H, generated by the 2n pointwise linearly independent vector fields

(6.2) Xi = ∂xi
+ 2yi∂t and Yi = ∂yi

− 2xi∂t,

where 1 ≤ i ≤ n. The reader may easily verify that H fulfils the Hörmander condition
and that the one-form corresponding to H is, according to (3.2),

(6.3) ϑ = 2
n
∑

i=1

(yi dxi − xi dyi) − dt

and is a contact form on Hn. Now by the considerations in Example 6.4, we can imme-
diately recapture the result [3, Theorem 1.2] of the first author stating that

dimH(τ(S,H)) ≤ n

for any C2 smooth hypersurface S ⊆ H.

It turns out that the notion of vanishing sets introduced in Definition 6.1 might be
inappropriate under certain circumstances. Examples include e.g. odd-codimensional dis-
tributions on even-dimensional ambient spaces, such as symplectic structures or hyper-
distributions on the Engel group.

We are therefore going to introduce a more general notion of vanishing sets, allowing
wedge products of any number of one-forms, as follows.
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Definition 6.6. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C0 distribution of rank n on an
open set U ⊆ Rn+m. Then, for 1 ≤ r ≤ m and s ∈ N0, we define the (r, s)-vanishing set,
or just vanishing set, with respect to D as

Vr,s :=
⋂

1≤i1<...<ir≤m
1≤j1≤...≤js≤m

V (ϑi1 ∧ . . . ∧ ϑir ∧ dϑj1 ∧ . . . ∧ dϑjs).

Remark 6.7. This more general notion of vanishing sets has similar properties to the
original one. Mentionable are, amongst others,

1) Vm,s = Vs for any s ∈ N0 and Vr,0 = ∅ for any 1 ≤ r ≤ m, where the latter is due
to the linear independence of the forms ϑi, 1 ≤ i ≤ m.

2) Vr,s ⊆ Vr′,s′ whenever (r, s) ≤ (r′, s′) and Vr,s = U whenever r + 2s > n+m.
3) The inclusion An+m−r−s+1 ⊆ Vr,s holds for all r, s ∈ N0 such that r+2s ≤ n+m.

This can be shown exactly the same way as in the proof of Proposition 6.3 1).

Using this more general definition of the vanishing sets, we get another corollary of
our main theorem.

Corollary 6.8. Let D = ker(ϑ1) ∩ . . . ∩ ker(ϑm) be a C1 smooth distribution of rank n
on an open set U ⊆ Rn+m and define

(6.4) Ω := {ω = ϑi1 ∧ . . . ∧ ϑir ∧ dϑj1 ∧ . . . ∧ dϑjs ∧ ζ : ω volume form on U},

where 1 ≤ i1 < . . . < ir ≤ m, 1 ≤ j1 ≤ . . . . . . ≤ js ≤ m and ζ is an (n + m − r − 2s)-
form on U . Let further S ⊆ U be a C2 smooth n-dimensional manifold and τ(S,D) its
tangency set with respect to D. Then

dimH(τ(S,D) ≤ min
Ω

{n+m− r − s} ≤ n.

Proof. First note that Ω 6= ∅, since there always exists an n-form ζ on U such that
ω =

∧m
i=1 ϑ

i ∧ ζ is a volume form on U . This already implies the second inequality. For
the first inequality, let r0, s0 ∈ N0 such that n+m− r0 − s0 = minΩ{n+m− r− s} and
let ω0 = ϑi1 ∧ . . .∧ ϑir0 ∧ dϑj1 ∧ . . . ∧ dϑjs0 ∧ ζ0 ∈ Ω be a volume form on U that realises
this minimum. Observe that V (ϑi1 ∧ . . .∧ ϑir0 ∧ dϑj1 ∧ . . .∧ dϑjs0 ) = ∅ in order ω0 being
a volume form on U . Now applying Remark 6.7 3), we get

(6.5) An+m−r0−s0+1 ⊆ Vr0,s0
⊆ V (ϑi1 ∧ . . . ∧ ϑir0 ∧ dϑj1 ∧ . . . ∧ dϑjs0 ) = ∅,

such that the claim follows from Theorem 1.3. �

Examples applying the above Corollary include

Example 6.9. Consider the (C∞ smooth) one-form ϑ := x1·dy1+. . .+xn·dyn on the open
set U := (0, 1)2n and the corresponding distribution D = ker(ϑ) of rank 2n− 1. Observe
that the differential dϑ = dx1 ∧ dy1 + . . .+ dxn ∧ dyn is the standard symplectic form on
U and that (dϑ)n is a volume form on U . Now using Corollary 6.8, we immediately get
dimH(τ(S,D)) ≤ n for any C2 smooth hypersurface S ⊆ U .

A generalisation of Example 6.5 to a higher codimensional situation reads as follows.

Example 6.10. Consider the Heisenberg group Hn and its standard horizontal vector
fields Xi, Yi defined as in (6.2). Let

D = span{Xi1 , . . . ,Xip
, Yj1 , . . . , Yjs

}

be the distribution pointwise spanned by 0 ≤ p ≤ n vector fields Xi and 0 ≤ s ≤ n vector
fields Yj . Let further denote S ⊆ Hn a C2 smooth (k := p+ s)-dimensional manifold and
τ(S,D) its tangency set with respect to D. Then

(6.6) dimH(τ(S,D)) ≤ card(I ∪ J) = p+ s− card(I ∩ J),
14



where I := {i1, . . . , ip} and J := {j1, . . . , js}: Indeed, without loss of generality, we may
assume that D = {X1, . . . ,Xp, Yq+1, . . . , Yr}, where 0 ≤ q ≤ p ≤ r ≤ n. In this case,
k = p+ r − q, I = {1, . . . , p}, J = {q + 1, . . . , r} and r = p+ s− card(I ∩ J).

Note that D is, according to (3.2) and letting N := {1, . . . , n}, the intersection of
the kernels of the one-forms ϑi = −dxi for i ∈ N \ I, ηj = −dyj for j ∈ N \ J and
ξ = 2

∑

i∈I yi dxi − 2
∑

j∈J xj dyj − dt,

D =
⋂

i∈N\I

ker(ϑi) ∩
⋂

j∈N\J

ker(ηj) ∩ ker(ξ).

Note further that dϑi = 0 for i ∈ N \ I, dηj = 0 for j ∈ N \ J and

dξ = −2
∑

i∈I△J

dxi ∧ dyi − 4
∑

i∈I∩J

dxi ∧ dyi.

Hence (dξ)r = c
∧r

i=1(dxi ∧ dyi), where c 6= 0 depends on p, s and r, and therefore

ω :=

n
∧

i=r+1

(ϑi ∧ ηi) ∧ ξ ∧ (dξ)r = c

n
∧

i=1

(dxi ∧ dyi) ∧ dt

is a volume form on Hn. Now (6.6) follows from Corollary 6.8.

In all the above examples, it was possible to obtain a volume form as a wedge product
exclusively made up by the defining one-forms and their differentials. It is therefore a
natural question whether the form ζ in (6.4) is actually necessary. This can be answered
affirmatively, as the following example shows.

Example 6.11. Consider the Engel group E with underlying space R4 and its points
denoted by z = (x, y, u, v) along with the four pointwise linearly independent C∞ smooth
vector fields

X = ∂x, Y = ∂y + x·∂u + 1
2x

2 ·∂v, U = ∂u + x·∂v and V = ∂v.

Further consider the two non-involutive distributions D2 := span{X,Y } as well as D3 :=
span{X,Y,U} of rank 2 and 3 respectively. The reader may easily see for themselves that
D2 = ker(ϑ1)∩ker(ϑ2), where ϑ1 = x·dy−du and ϑ2 = 1

2x
2·dy−dv and that D3 = ker(ϑ),

where ϑ = − 1
2x

2 ·dy + x·du − dv. It is also straightforward to see that dϑ1 = dx ∧ dy,

dϑ2 = x·dx ∧ dy and dϑ = −x·dy + x·du− dv.
In order to find an estimate for the size of τ(S,D2) for any C2 smooth manifold S ⊆ E,

note that ϑ1 ∧ ϑ2 ∧ dϑ1 = dx ∧ dy ∧ du ∧ dv is a volume form. Therewith, Corollary 6.8
yields dimH(τ(S,D2)) ≤ 1.

To estimate the size of τ(S,D3) first note that any product of type (ϑ)r ∧ (dϑ)s, where
r > 1 or s > 1, equals zero. On the other hand, letting ζ := dy, the product form
ϑ ∧ dϑ ∧ ζ = −dx ∧ dy ∧ du ∧ dv is a volume form. Now again using Corollary 6.8, we
get dimH(τ(S,D3)) ≤ 2.

7. Sharpness of Theorem 1.3

We point out that the examples from the previous section not only are useful ap-
plications of Theorem 1.3, but also show the sharpness of our estimates in the sense
that there exist C2 smooth manifolds S for which the lower and the upper estimates
from Theorem 5.2 coincide. For Examples 6.4 to 6.10, this is an immediate consequence
of Corollary 5.5. In the case of Example 6.11, consider the involutive subdistributions
D′

2 := span{X} ⊆ D2 and D′
3 := span{Y,U} ⊆ D3 of rank 1 and 2 respectively.

It is therefore a natural question whether the lower and the upper estimates from
Theorem 5.2 coincide for all C1 smooth distributions. That this has to be answered
negatively, however, follows already from Example 1.4: Whereas ι(D) is integer for any
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C1 smooth distribution by definition, the right side of (5.1) is not in the setting of the
respective example. We are going to provide, in addition, an example for which (5.1)
features two strict inequalities.

Another interesting issue related to the sharpness of Theorem 1.3 is the range of pos-
sible values for the right side of (1.2). In the setting of a one-codimensional distribution,
a lower bound for the range is given by Theorem 5.4 and Corollary 5.5 respectively. As
we shall see, any value between n and 2n can in fact be taken in the setting of a one-
codimensional distribution on R2n+1, which is even realised by a suitably constructed
manifold.

Example 7.1. Let f : (0, 1) → R be a C∞ smooth function such that f(x) = 0 if and
only if x belongs to the middle third Cantor set C ⊆ (0, 1) and consider the corresponding
(C∞ smooth) distribution D := span{∂x, ∂y + f(x)·∂t} = ker(ϑ) on U := (0, 1)3, where
ϑ = f(x) ·dy − dt and where the points in U have coordinates z = (x, y, t). Note that
such an f exists by an application of Whitney decomposition and partition of unity; see
[16, Proposition 2.3.4].

However, in order to avoid loss of control over (f ′)−1(0) in this general construction
and to make our ideas more accessible to the reader, we shall construct such a function
f explicitly: Starting from the ‘bump function’ ψ : R → R,

ψ(x) :=

{

e−1/(1−x2) if − 1 < x < 1
0 else

,

we recursively define ϕ1(x) := ψ(6x − 3) and ϕi+1(x) := ϕi(3x) + ϕi(3x − 2) for i ∈ N.

Then the series f(x) :=
∑∞

i=1 2−2i

·ϕi(x) converges and has the required properties, indeed,
as it is not hard to be verified.

With respect to the upper estimate in (5.1), we shall mainly take into consideration
A2. In this regard, first note that dϑz = f ′(x)·dx∧dy. Letting X := span{∂x, ∂y}, we get
C ′ := C × (0, 1)2 ⊆ A2 and therewith max1≤k≤3{min{dimH(Ak \ Ak+1), k}} = 2, since
A3 = ∅.

On the other hand, we shall see that ι(D) = 1: Assume by contradiction that ι(D) =
2. Then there exists a 2-dimensional C2 smooth manifold S ⊆ U that is everywhere
tangent to D. Without loss of generality, we may assume that S is the graph of a C2

smooth function g : U ′ → (0, 1), where U ′ ⊆ (0, 1)2 is an open set, i.e. S = {z =
(x, y, t) ∈ U ′ × (0, 1) : t = g(x, y)}. Since S is everywhere tangent to D, we have
ker(ϑz) = Tz(S) = span{∂x + gx(x, y)·∂t, ∂y + gy(x, y)·∂t} for all z = (x, y, t) ∈ S. Hence
gx(x, y) = 0 and gy(x, y) = f(x) for all (x, y) ∈ U ′. Using the C2 smoothness of S, we
get gxy(x, y) = 0 = f ′(x) = gyx(x, y) for all (x, y) ∈ U ′. To the contrary, the equality
f ′(x) = 0 holds if and only if x ∈ C ∪A, where A = { 1

2 ,
1
6 ,

5
6 ,

1
18 ,

5
18 ,

13
18 ,

17
18 , . . .} is the set

of the midpoints of the removed intervals in the construction of C. Now the fact that
C ∪A does not contain any open intervals contradicts the existence of S.

We conclude this example by indicating a (C∞ smooth) manifold the Hausdorff di-
mension of whose tangency set lying strictly between the two estimates from (5.1): Let
S := {z ∈ (0, 1)3 : t = 1

2}. Then τ(S,D) = S ∩ C ′ and thus

dimH(τ(S,D)) = 1 + dimH(C) = 1 +
log(2)

log(3)
.

We leave it to the reader to verify that actually for any given 2-dimensional C2 smooth
manifold S and the distribution D from the above example, the estimate dimH(τ(S,D)) ≤

1 + log(2)
log(3) holds. This can be done e.g. by again interpreting S (locally) as the graph of

a C2 smooth function g : U ′ → (0, 1), projecting its tangency set to the xy-plane and
showing that dimH(proj(τ(S,D)) \ (C × (0, 1))) ≤ 1, using Proposition 2.7.
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The completeness and sharpness of our main theorem is also reflected in the following
proposition, which generalises the idea of Example 1.4.

Proposition 7.2. Let n ∈ N and let 0 ≤ s ≤ n be any real number. Then

1) there exist an open set U ⊆ R2n+1 and a C∞ smooth distribution D of rank 2n on
U such that the right side of (1.2) equals to n+ s.

2) there exists a C∞ smooth 2n-dimensional manifold S ⊆ U such that we have
dimH(τ(S,D)) = n+ s.

Proof. The cases s = 0 as well as s = n are covered by the contact, see Example 6.4,
and the involutive cases respectively. The idea of this proof is to adapt the defining form
of the contact distribution to our specific needs. Let us denote the points of R2n+1 by
z = (x1, . . . , xn, y1, . . . , yn, t) and consider for 1 ≤ s ≤ n− 1, s ∈ N, the smooth one-form
ϑ := xs+1 ·dys+1 + . . . + xn ·dyn − dt on U := (0, 1)2n × (−1, 1) ⊆ R2n+1. Observe that
dϑ = dxs+1 ∧ dys+1 + . . .+ dxn ∧ dyn and therefore

ϑ ∧ (dϑ)n−s = ±dxs+1 ∧ . . . ∧ dxn ∧ dys+1 ∧ . . . ∧ dyn ∧ dt

is a non-vanishing (2n−2s+1)-form on U . Now using (6.5), we immediately get An+s+1 ⊆
V1,n−s = ∅.

On the other hand, note that the distribution D := ker(ϑ) is

D = span{∂x1
, . . . , ∂xn

, ∂y1
, . . . , ∂ys

, ∂ys+1
+ xs+1 ·∂t, . . . , ∂yn

+ xn ·∂t},

as immediately can be verified. Also note that D contains the involutive subdistribution
D′ = span{∂x1

, . . . , ∂xn
, ∂y1

, . . . , ∂ys
} of rank n+ s, which directly implies An+s = U and

completes the proof of 1) in the particular case s ∈ N.
The case of non-integer s is slightly more intricate, though can be handled as a combi-

nation of the integer case and Example 1.4 as follows: Define l := ⌊s⌋ as well as d := s− l
and consider U := (0, 1)n×(0, 1)l+1×(−1, 1)n−l−1×(−1, 1) ⊆ R2n+1. We shall construct
a set A ⊆ U of Hausdorff dimension n + s and find a one-form ϑ such that An+l+2 = ∅
and An+l+1 = A for the corresponding distribution D = ker(ϑ).

Let A := (0, 1)n × (0, 1)l × C × {0}n−l−1 × {0} ⊆ U , where C ⊆ (0, 1) denotes a
d-dimensional Cantor set, and note that dimH(A) = n+ l+d = n+ s. Let further denote
by ϕ : R2n+1 → R a Whitney function [16, Proposition 2.3.4] with respect to A with
the properties: ϕ ∈ C∞(R2n+1), ϕ(z) ≥ 0 for all z ∈ R2n+1 and ϕ(z) = 0 if and only
if z ∈ A. Observe that by the choice of A, there exists a function ϕ with the above
properties that does not depend on the first n + l variables. Next define the function
f : R2n+1 → R, f(z) := xl+1 ·ϕ(yl+1, . . . , yn, t) and consider the associated C∞ smooth
one-form, pointwise defined by

ϑz := f(z)·dyl+1 + xl+2 ·dyl+2 + . . .+ xn ·dyn − dt.

In order to show An+l+2 = ∅, observe that

dϑ =
∂f

∂yl+2
dyl+2 ∧ dyl+1 + . . .+

∂f

∂yn
dyn ∧ dyl+1 +

∂f

∂t
dt ∧ dyl+1 +

+
∂f

∂xl+1
dxl+1 ∧ dyl+1 + dxl+2 ∧ dyl+2 + . . .+ dxn ∧ dyn,

which implies
ϑ ∧ (dϑ)n−l−1 = ω ± ω0,

where ω0 = dxl+2 ∧ . . . ∧ dxn ∧ dyl+2 ∧ . . . ∧ dyn and ω is a (2n − 2l − 1)-form that is
linearly independent of ω0. Hence, using (6.5), we obtain An+l+2 ⊆ V1,n−l−1 = ∅.

For the equality An+l+1 = A, first consider z /∈ A. Note that ∂f
∂xl+1

(z) = ϕ(z) 6= 0 and

that
ϑ ∧ (dϑ)n−l = ω′ ± ω′

0,
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where ω′
0 = ∂f

∂xl+1
(z)·dxl+1 ∧ . . . ∧ dxn ∧ dyl+1 ∧ . . . ∧ dyn and ω′ is a (2n− 2l + 1)-form

that is linearly independent of ω′
0. Since ω′

0 does not vanish at z, we have z /∈ V1,n−l,
and, again using (6.5), z /∈ An+l+1. Thus An+l+1 ⊆ A.

For the opposite inclusion A ⊆ An+l+1, consider z ∈ A. Since z is a global minimum
of f , all partial derivatives of f vanish at z. This immediately implies that ϑz = xl+2 ·
dyl+2 + . . . + xn ·dyn − dt and dϑz = dxl+2 ∧ dyl+2 + . . . + dxn ∧ dyn. Now for X :=
span{∂x1

, . . . , ∂xn
, ∂y1

, . . . , ∂yl+1
} ∈ G(2n + 1, n + l + 1), we have dϑz|X = 0 and hence

z ∈ An+l+1. �

Remark 7.3. Note that, additionally to the above assertions, ι(D) = n+ ⌊s⌋ holds for the
distribution D in Proposition 7.2. This directly implies, as a consequence of Theorem 5.2,
the existence of a C2 smooth manifold S ⊆ U with the property n+⌊s⌋ ≤ dimH(τ(S,D)).

Remark 7.4. Also note that a similar statement to the one in the above proposition can
be shown on an even-dimensional ambient space. In this setting, the roles of the two
extremes are played by the symplectic and the involutive cases respectively.

8. Final remarks and questions

As we shall see in this final section, our results are not only sharp in the sense of Theo-
rem 5.2. As already exemplified by the first author in [3], C2 smoothness of the manifolds
is crucial for our estimates. If merely C1,α smoothness, 0 < α < 1, is assumed, the
tangencies can grow significantly. The results in [3] are extended to higher codimensional
cases in the sequel.

The second part of the section is devoted to open questions/problems related to our
work. These include generalisations of our estimates into various directions, in particular
to non-Euclidean metrics, e.g. in the context of Carnot groups. Additionally, we are going
to present several approaches in order to find lower estimates for the size of tangencies
of compact manifolds.

Towards the proposition on the necessity of C2 smoothness, we consider a distribution
D of rank n on an open set U ⊆ Rn+m that is translation invariant along Rm and
start the discussion by explaining the connection between tangency sets and mappings
with prescribed Jacobian matrix: First note that the translation invariance property for
D = span{X1, . . . ,Xn} implies that the vector fields Xi, 1 ≤ i ≤ n, are independent of
y ∈ Rm, i.e.

Xi(x, y) = Xi(x) = ∂xi
+

m
∑

j=1

cij(x)·∂yj
.

Let us now consider an n-dimensional manifold S ⊆ U . Without loss of generality, we
may assume that S is given as the graph Γf of a C1 smooth mapping f : Q→ Rm, where
Q ⊆ Rn denotes the cube centred at the origin and with side length 1:

S = {(x, f(x)) : x ∈ Q}.

Equivalently, S may be seen as the level surface of the mapping ̺ : Rn+m → Rm given
by ̺(x, y) = y − f(x): S = {(x, y) ∈ Q× Rm : ̺(x, y) = 0}. A point (x, y) ∈ Q× Rm is a
tangency point of S if and only if y = f(x) and Xi(̺j(x, y)) = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m
and where ̺j(x, y) = yj − fj(x) denotes the j-th component of ̺(x, y). This implies that

(x, f(x)) ∈ τ(S,D) if and only if cij(x) =
∂fj

∂xi
(x) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, or,

equivalently,

(8.1) (Jf)T (x) =







c11(x) · · · c1m(x)
...

. . .
...

cn1(x) · · · cnm(x)






,
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where (Jf) denotes the Jacobian matrix of f . Using the notation C(x) for the matrix
from (8.1), we define τ ′(f) := {x ∈ Q : (Jf)T (x) = C(x)}. Note that τ(f) = τ ′(f).

By these considerations, in order to obtain large tangencies, it is enough to prescribe
(Jf)(x) according to (8.1) on a large measure set within Q. The precise statement is
formulated in the following

Lemma 8.1. Let Q ⊆ Rn be the unit cube centred at the origin and C : Q → Rn×m a
matrix of C1 smooth functions cij : Q→ R. Then

1) for any α > 0 there exists a C1,1 smooth mapping fα : Q→ Rm such that

dimH(τ ′(fα)) ≥ n− α.

2) for any ε > 0 there exists fε : Q→ Rm, fε ∈
⋂

0<α<1 C
1,α such that

Hn(τ ′(fε)) ≥ 1 − ε.

Proof. In [3, Theorem 4.1], the first author proved the statement for the special case
m = 1. But since fα and fε respectively can be decomposed into a vector of m real-valued
functions and the construction of the large measure sets in the proof of [3, Theorem 4.1]
depends neither on C nor on fα or fε respectively, the reader may assure themselves that
the statement also holds for general m. �

We are now in position to formulate the main statement of this section.

Proposition 8.2. Let U ⊆ Rn+m be an open set and let D be a C1 smooth distribution
of rank n on U that is translation invariant along Rm. Then

1) for any α > 0 there exists a C1,1 smooth n-dimensional manifold Sα ⊆ U such
that

dimH(τ(Sα,D)) ≥ n− α.

2) there exists an n-dimensional manifold S ⊆ U of smoothness
⋂

0<α<1 C
1,α such

that
Hn(S) <∞ and Hn(τ(S,D)) > 0.

Proof. Following the discussion in the beginning of this section, we may assume without
loss of generality that Sα is the graph Γfα

of a C1,1 smooth mapping fα : Q → Rm.
Then Sα = {(x, fα(x)) : x ∈ Q} and, by the equality τ(fα) = τ ′(fα), we have that
τ(Sα,D) = {(x, fα(x)) : x ∈ τ ′(fα)}. Note that the projection Φ−1

α : Q × Rm → Q,
where Φα(x) = (x, fα(x)), is Lipschitz. Thus [11] dimH(τ(Sα,D)) ≥ dimH(τ ′(fα)). Now
Lemma 8.1 implies 1). Applying the same arguments to S and fε respectively yields
2). �

The restriction in Proposition 8.2 to translation invariant distributions gives rise to
our first

Problem 8.3. State and prove a generalised version of Proposition 8.2 that holds for
any C1 smooth distribution.

We are next turning our attention towards the generalisation of our main theorem into
various directions. One of the probably most natural desired generalisations of our main
results is formulated in

Problem 8.4. Prove sharp estimates akin to Theorems 1.3 and 5.2 respectively for tan-
gency sets of type τ̃(S,D), introduced in Definition 4.4.

In the whole present article, we considered Hausdorff measures and dimensions with
respect to the Euclidean metric on Rn+m. In the context of Carnot groups, however, one
might be more interested in corresponding results with respect to the sub-Riemannian
Carnot-Carathéodory metric, to which we shall refer as the CC metric in the sequel.
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Results in this direction have been presented both for Heisenberg groups [3] and later for
general Carnot groups [17].

An upper estimate for dimCC(τ(S,D)), where dimCC denotes the Hausdorff dimension
with respect to the CC metric, can immediately be obtained using the dimension com-
parison formula [4] for general sets in Carnot groups: Recall [4] that in the setting of a
Carnot group G with underlying space RN and of homogeneous dimension Q, there exist
(piecewise linear) functions β−, β+ : [0, N ] → [0, Q] such that

(8.2) β−(dimE(A)) ≤ dimCC(A) ≤ β+(dimE(A))

holds for any set A ⊆ G, where dimE denotes the Hausdorff dimension with respect to
the Euclidean metric. Combining (1.2) with (8.2) and denoting the right side of (1.2) by
d for simplicity, we immediately get the estimate

dimCC(τ(S,D)) ≤ β+(d) ≤ dimCC(S).

Observe, however, that the above estimate might be not very strong for several reasons:
First, we do not know much about its sharpness. And secondly, as a consequence of the
conditions of Theorem 1.3, it holds only for C2 smooth manifolds, whereas the original
results [3, 17] apply for merely horizontally C1 smooth manifolds. Recall at this point
that a manifold S is called horizontally Cr, r ∈ N, smooth if the respective property
holds along the directions spanned by D.

The desired generalisation of our main theorem is formulated in

Problem 8.5. State and prove a generalisation of Theorem 1.3 for Carnot groups that
estimates the size of the tangency sets of horizontally C1 smooth manifolds in terms of
their Hausdorff dimension with respect to the CC metric.

Whereas our upper estimate according to Theorem 1.3 is general in the sense that it
holds for any distribution and any manifold, the lower one according to Theorem 5.2 is
not, since it only asserts the existence of some manifold with the respective property. It
would be interesting to find a lower bound for the size of the tangency with respect to a
given distribution that holds for any manifold.

To see that this is not precisely the interesting direction to be investigated, observe
that if D is non-involutive, there exists a C2 smooth manifold S ⊆ Rn+m such that
τ(S,D) ( S. Since τ(S,D) is closed in S, the set S \ τ(S,D) is open in S and is a C2

smooth manifold that does not contain any tangency points at all. Obviously, this results
in any lower bound for the above problem being zero.

In order to avoid the present difficulties and obtain a more accurate statement, we shall
consider a distribution on an open set U ⊆ Rn+m together with a specific n-dimensional
manifold S. We shall then search a lower bound for the size of the tangencies with respect
to all embeddings of S into U . The precise statement is formulated in

Problem 8.6. Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m

and let S be an n-dimensional C2 smooth manifold that can be embedded C2 smoothly
into U . Indicate a real number 0 ≤ l ≤ n such that

(8.3) dimH(τ(S′,D)) ≥ l

for all images S′ of S under a C2 smooth embedding into U , where τ(S′,D) denotes the
tangency set of S′ with respect to D.

In the case l = 0, find n ∈ N0, such that (8.3) can be replaced by

(8.4) card(τ(S′,D)) ≥ n

or show that n = ∞.
Also indicate a C2 smooth embedding of S into U such that the image S′ yields equality

in (8.3) or (8.4) respectively.
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A natural generalisation of Problem 8.6 is formulated in

Problem 8.7. Let D be a C1 smooth distribution of rank n on an open set U ⊆ Rn+m and
let S be an be an (n+ r)-dimensional, 0 ≤ r ≤ m, smooth manifold that can be embedded
C2 smoothly into U . Find estimates corresponding to (8.3) and (8.4) respectively for the
size of the tangencies τ̃(S′,D) and indicate a C2 smooth embedding of S into U whose
image realises equality.

Although we are not able to solve Problems 8.6 and 8.7, we presume that the following
two examples may indicate a track to their solution.

Example 8.8. Let ϑ be a one-form with constant coefficients on Rn+1 and consider
the (C∞ smooth) distributions D := ker(ϑ) as well as D⊥. Let further S ⊆ Rn+1 be a
compact orientable C2 smooth hypersurface without boundary. In order to estimate the
size of the tangencies, observe that τ(S,D) and τ̃(S,D⊥) correspond to the critical sets
of the projections p⊥ : S → D⊥(0) and p : S → D(0) respectively.

Suitably identifying D⊥(0) with the real axis, the projection p⊥ becomes a height
function and therewith a Morse function for almost all ϑ. Hence [21, p. 216], p⊥ defines a
homotopy spherical complex structure on S. Now according to [25], the number of critical
points of p⊥ is bounded from below by the Lusternik-Schnirelmann category of S.

For what concerns the tangency set τ̃(S,D⊥), first observe that p, featuring a compact
domain and a non-compact codomain, is not surjective. Hence the degree [10] of p equals
zero, which implies that the critical set of p separates S. Therefore dimH(τ̃(S,D⊥)) ≥
dim(τ̃(S,D⊥)) ≥ n− 1.

In the context of a non-involutive distribution, we have the following

Example 8.9. Consider the Heisenberg group Hn together with the horizontal distri-
bution H, as introduced in Example 6.5. Let further S ⊆ Hn be a compact orientable
hypersurface without boundary of non-zero Euler characteristic χ(S). As we shall see,
τ(S,H) 6= ∅: Consider the Gauß map [21] n : S → S2n with respect to an arbitrary
orientation of S on the one hand and the normalised cross product N : Hn → S2n,

N(z) :=
X1 ∧ . . . ∧Xn ∧ Y1 ∧ . . . ∧ Yn

|X1 ∧ . . . ∧Xn ∧ Y1 ∧ . . . ∧ Yn|
(z),

on the other hand. Then τ(S,H) = {z ∈ S : n(z) = N(z)}. Now while the degree of n

amounts to χ(S)
2 6= 0 according to [26], the normal unit vector field N |S : S → S2n is not

onto and has degree zero therefore. Hence n and N are not homotopic, which results in
τ(S,H) 6= ∅.

Remark 8.10. Observe that the assumption χ(S) 6= 0 in Example 8.9 is essential. This
follows e.g. from the fact [27] the tangency set of the standard torus in Hn (of zero Euler
characteristic) being zero.
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Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser
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