Definition and regularity of quasiconformal
mappings in metric spaces

Zoltan M. Balogh
Mathematisches Institut, Universitat Bern
Sidlerstrasse 5
3012 Bern, SWITZERLAND
zoltan.balogh@math-stat.unibe.ch

September 16, 2005

Contents

1 Introduction

2 QC Mappings. Definitions

3 QC Mappings in R”

4 QS Mappings. Definitions

5 Higher integrability of QS mappings
6 Absolute continuity on curves

7 Hausdorff dimension distortion

8 Quasiconformality and Quasisymmetry

10

17

20

22



1 Introduction

These are notes of the graduate course I gave during the Fourth School on
Analysis and Geometry of Metric Spaces held between 22-27 May in Trento,
Italy. The interest for studying quasiconformal and quasisymmetric mappings in
the general setting of metric spaces is motivated by the applications in obtaining
rigidity results for quasi-isometries of hyperbolic spaces (see eg.in [BP02]). Since
Bruce Kleiner gave a parallel set of lectures focusing on this aspect, I will not
dwell too much on this point. The goal of my lectures is twofold: to present
various regularity properties of quasisymmetric mappings on the one hand; on
the other hand I will show that the infinitesimal notion of quasiconformality
implies the global condition of quasisymmetry in quite general metric setting.

There are three type of regularity properties that are being considered: ab-
solute continuity on curves, Gehring-type higher integrability results and Haus-
dorff dimension distortion by quasisymmetric maps. These subjects are being
treated in the first part of the lectures. In this context T mention (without
proofs) the sharp results of Kari Astala [Ast94] in the planar case. T will then
try to present a more or less self contained proof of the Gehring’s higher inte-
grability result of quasisymmetric maps in general metric measure spaces with
controlled geometry following the paper of Juha Heinonen and Pekka Koskela
[HK98]. It is worth noting that beyond the planar case no sharp higher inte-
grability result 1s known in Euclidean spaces. The second part of the lectures
is based on the recent joint work with Pekka Koskela and Sari Rogovin. It is
shown that the infinitesimal condition of quasiconformality implies the global
property of quasisymmetry in Loewner spaces. In fact more is true: one can
replace the usual definition of quasiconformality (based on a limsup condition)
by an apriori much weaker liminf condition. (This was shown earlier by Juha
Heinonen and Pekka Koskela [HK95] in the Euclidean setting and conjectured
to hold in more general metric spaces.)

A cknowledgements I would like to thank the organizers: Luigi Ambro-
sio, Bruno Franchi, Raul Serapioni and Francesco Serra Cassano for
the invitation. I thank also the lively audience in Trento for the attention, in-
terest and challanging questions following my lectures. My gratitude goes to
Thomas Zurcher for his hard work of writing up these notes and for clarifying
many points of the often sketchy lectures.

2 QC Mappings. Definitions

There are several definitions for QC mappings. Let us start with the metric
definition, which can be formulated in the general context of metric spaces.

Definition 2.1 (Metric definition for QC mappings). Let (X, d) and
(X',d") metric spaces and f: X — X' be a homeo. between them. We de-



fine the upper and lower oscillation of f at the point # and scale r > 0 as:

Ly (w,r) :=sup{d' (f (x),f () : d(z,y) <7}
ly (w,r) = inf{d" (f (2), f (y)) : d(2,y) > 7}

and the metric distortion quotient as:
Li(z,r)
ly (z,7)

Exercise 2.2.  a) Show that if X and X' are connected then for r small
enough Hy (z,r) > 1.

He (z,r) =

b) Find an example of spaces X, X' and a homeo. f for which Hy (x,7) < 1.

Definition 2.3 (metrically H-QC ). We say that f is metrically H-quasiconformal
(or, as we will say for short: metrically H-QC) if

limsup Hf (z,r) < Hfor all € X.

r—0

We further let

I/ (2) = lim inf L5

r—0 r

L
L (2) :=limsup M

r—0

Exercise 2.4. Let f: R™ — R™ differentiable at x € R™. We define the positive
definite symmetric matriz A (x) as

Ax)=D'f(x)- Df (x). (2.1)
Denote by A1, ..., Ay the eigenvalues of A (x), where

0<A <A< <AL



Show that Ly (z) = Ay, lf () = A1 and

QC mappings are however typically non-smooth mappings. An important
example in R”™ is the so-called radial stretching defined in the following:

Exercise 2.5. Let 0 < o < 1, and f,: R" — R"™ defined by
Jo(z)=|2|7% 2.

(See Figure 1)
Prove the following statements:

(1) Ly, (w) = |o[™", 2 £ 0
(2) Hy, () = 7= if 2 # 0 and Hy (0) = 1

(3) fa EWL = p<

C

If we consider the image of the ring centered in 0 and defined by the two
radii % and 1, we get under the function f from Exercise 2.5 the ring with the

same center but with radi (%)1_a and 1.

Figure 1: Geometry of f,
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We can use the radial stretching f, as building block to construct QC map-
pings which change dimensions of Cantor sets in a rather arbitrary fashion.
Such construction was performed in the Euclidean setting by F. Gehring and
J. Vaisala in 1973. We shall briefly sketch their construction in what follows.

Theorem 2.6 (F. W. Gehring, J. Vaisala 1973). For any {1 and {5 with
0 <ty <n, 0<ts < n there are Cantor sets Cy with dimg (C1) = t; and Cs
with dimg (C2) =t and a QC map f: R™ = R™ such that f (Cy) = Cs.



Let B the unit ball and let us fix N € IN and » > 0 and assume that we
have N disjoint balls B(¢;,r) C B. Associate to every ball B; the confor-
mal map f; which is the composition of a translation and a scaling such that
£ (B (gi,7) = B.

Consider the iterated function system generated by {fl_l, ce f;,l} Fix t,
0 <t < n. By choosing N and r in an appropriate way, we get that the dimen-
sion of the invariant set is ¢.

For given t1,1s, where 0 < 1] < {5 < n we construct via the system {f1,..., fn}
described above a set Sy, with dimension ¢;. Similarly with a system {g1,...,g9n}
we can obtain a set S, with dimension t3. (We can construct S, and S, in
such a way, that the cardinalities of the iterated function systems agree.)

The construction of the quasiconformal map f with the property that f (S;,) = S,
is done inductively. At the end we need to look at the limit of the sequence of
the maps we generated in each step.

As you can see in Figure 2 (here N = 2), in the k™" step we have N* rings
contained in N* balls. Outside the largest ball the function is assumed to be
the identity. One uses compositions of the functions {fi,...fx} to map each
ring to the left initial ring shown in the top part of Figure 2. Then we map
this ring with the function f, to the right one. We compose the obtained map
with corresponding compositions of functions in {gl_l, .. .,ggfl} such that we
get maps like this:

-1 -1 -1
9, ©Y;,_,° %9 Ofocofilofizo"'ofik~

This is the idea behind the following theorem which can be found in [GVT73].
However F. Gehring and J. Vaisala did such a construction for cubes. The ring
construction like we did it here is shown (in the Heisenberg group) in [Bal01].

Remark 2.7. As shown in [Bal01] Theorem 2.6 holds also in the Heisenberg
group with a similar proof.

We observe that in the preceding theorem there is a dependance between H,
n, tl, tz.

Question 2.8. What is the relation between H, ty and t5?

We shall give a partial answer to this question in the next section. We
shall see that we have a complete answer for the case of planar quasiconformal
mappings. In higher dimensions (and more general metric spaces) we have only
partial results.

Question 2.9. For which metric spaces do we have interesting QC maps?

By interesting QC maps we mean here non-smooth or non-conformal map-
pings similar to those from Theorem 2.6.

3 QC Mappings in R"

In the previous section we considered QC maps in the general metric setting.
In Euclidean space we have a lot more structure. In this section we recall some
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results on QC maps in Euclidean spaces. A good introduction provides the book
of J. Vaisala, [Vai7l]. First we would like to start with an alternative definition
of QC maps: the analytic one. See for example [Ric93, Theorem 6.2, p.42].

Definition 3.1 (Analytic definition of quasiconformal mappings). Let
K > 1. A homeo. fis K-QC if

(1) fe Wl (R and

loc
(2) |Df (z)|" < KJ; (2) for a.e. @ € R,

where J; (2) stands for the determinant of Df (x) which is the distributional
Jacobian of f at . In the sequel let us assume that K is the least K for which

(2) holds.

Exercise 3.2. This exercise is the continuation of exercises 2.4 and 2.5. Show
that under the setting of Ezxercise 2.4 the following holds:

Kp(e)= —20 < i),

Further calculate K¢ for the function defined in Exercise 2.5

That the metric and the analytic definition of quasiconformality coincide in
Euclidean spaces is shown by the following theorem.

Theorem 3.3. Let f: R® — R"™ be a homeomorphism. Then f is metrically
QC if and only +f f is analytically QC. Moreover

K < H" L.

The analytic definition assumes some regularity for QC maps. In fact the reg-
ularity is higher than a priori expected. The following Theorem was proved by
B. V. Bojarski for the case when n = 2in 1955 in [Boj55]. In 1973 F. W. Gehring

was able to prove a more general result, which can be found in [Geh73].

Theorem 3.4 (F. W. Gehring 1973). Assume that f: R" - R"” is K-QC.
Then there exists p (K,n) > n such that f is in WP for p < p (K, n).

loc

Question 3.5. What do we know about the dependance (K, n) — p(K,n)?
Remark 3.6. Considering Exercises 2.4 and 2.5 we get by setting f = f, that

KT
p(K,n) < ———.
Kw1 —1

F. Gehring conjectured that the upper bound for p in the above remark is
really sharp:

Conjecture 3.7 (F. W. Gehring). Let f: R" — R" be K-QC . Then f €
Wil for
n. KT

p<p(K,n)= . :
Kot — 1



Whether this conjecture is true or not is still an open question. However
K. Astala proved the conjecture in the case where n = 2. The proof uses special
techniques of complex analysis such as Beltrami equations, the Ahlfors-Beurling
operator and holomorphic motions [Ast94].

Theorem 3.8 (K. Astala 1994). If f: R2 5 R? is K-QC then f € VVli’f for
2K
p< x—1-

As a consequence of this theorem we obtain bounds for the Hausdorff di-
mension of the image of a compact set under a QC map answering Question 2.8
in the planar case.

Corollary 3.9. Assume that Q and ' are planar sets. Let f: Q@ — Q' a K-QC
map and E C Q compact. Then

. 2K dimy (E)
dimp f(E) < 57 (K — 1)dimg (E)

. (3.1)

Moreover

1 1 1 1 1 i 1 1
K \dimg £ 2, ~ dimg f(E) 2~ dimg £ 2
In the same paper K. Astala showed the sharpness of the bounds by con-

structing sets such that inequality (3.1) becomes an equality:

Theorem 3.10. For 0 < ¢ < 2 there exists a set By C R? with dimg (E¢) = ¢
and a map f: R? = R? which is K-QC such that

. 2K dimg (B)
dimg f (Ey) = 2+ (K —1)dimg (Fy)’

After this overview of higher integrability and distortion of Hausdorff dimen-
sion in the planar case let us turn back to the result of Gehring.

The main idea of Gehring’s proof of the higher integrability result in R”
is the following reverse Holder inequality. To formulate Gehring’s Lemma let
us introduce first some notation. For a set A C R with £" (4) > 0 and g €

L{ _(R™) denote by
1
gdL" = / gdL”.
]{4 L7 (A) Ja

loc
Lemma 3.11 (F. W. Gehring 1973). Let f: R” - R"” a K-QC map. Then
there exists a constant b = b (K, n) such that

/ L;;dmgb(][ W).
B(z,r) B(z,r)

Remark 3.12. The sharp dependance from b of K and n is not known.

Now, that we know that the maximal derivative of a QC map satisfies a
reverse Holder inequality, the following lemma is the step we need.



Lemma 3.13 (F. W. Gehring, 1973). Let ¢ > 1, w € L] , w > 0. If there
erists a constant b > 1 such that

q
][ wddl™ <b (][ w dﬁ")
B(z,r) B(z,r)

then there is a C' > 0 such that w € IV  forq<p<q+C, C=C(q,b,n).

loc

Gehring’s Theorem 3.4 follows now as a combination of above lemmas by
setting w = Ly and ¢ = n.

We shall see below that the method of Gehring also works in general metric
measure spaces satisfying a Poincaré inequality for 1 <p < @.

4 QS Mappings. Definitions
The quasiconformality is a local condition. We get a global condition if we

require Hy (z,7) to be bounded instead of limsup, _, o Hy (2, 7).

Definition 4.1 (Quasisymmetry). (1) We say that a homeo. f: X — X'
between two metric spaces is quasisymmetric if there exists an H > 1 such
that

Hi(z,7)<H forallze X, r < diamX.

Observe that this can also be written as a three point condition. One
requires

d(z,a) <d(z,b) = d' (f (z),f(a)) < Hd (f (z), f (b)) forall z,a,be X.

(2) A homeo. f as above is called 7-quasisymmetric if there exists an increasing
homeo. n: [0, 00) — [0, o0) such that

d(e,a) < td(e,0) = d' (£ (), [ (@) <n(O)d (f (), F () @b X,1>0.
/(a)

By setting t = 1 and H := (1) in the above definition we see that (1) is
implied by (2). In spaces with good properties the converse is also true as shown

by Jussi Vaisala in [VAi89)].

Lemma 4.2 (J. Vaisala 1989). Let X and X’ two pathwise connected doubling
(see Definition 4.3) spaces. Then [ QS implies f n-QS.
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Definition 4.3 (Doubling Condition). A metric space (X, d) is called dou-

bling if there exists a constant M € N such that every ball B (z,r) in X can be

covered by M balls with radius 7.

Example 4.4. (1) Most usual suspects are examples of doubling spaces: R",
Carnot groups, Riemannian manifolds, simplicial complexes, regular frac-
tals.

(2) Infinite dimensional Hilbert spaces or the French railway are not doubling.

It is clear that the global condition of quasisymmetry is much more con-
venient to use than the a priori weaker condition of quasiconformality. The
following question is therefore of crucial importance.

Question 4.5. Under what conditions is quasisymmetry tmplied by quasicon-
formality?

We postpone this important question for the last lectures. We assume at
the moment that our mappings are quasisymmetric.

In the next section following the work of J. Heinonen and P. Koskela we shall
introduce a class of spaces with good geometric properties where a reasonably
good regularity theory of QS mappings can be obtained. In particular we shall
present Gehring’s higher integrability result for QS mappings in space with
controlled geometry. (Theorem 5.6 below).

5 Higher integrability of QS mappings
Assume that f is QS and assume the following on (X, d, u):

(1) The measure g is Q-regular for a @ > 1. This means there exists a
constant C' > 1 such that

1
67“Q <pu(B(x,r) < cre.

for every ball B (z,r) C X.
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(2) (X,d,p) satisfies a (1,p)-Poincaré inequality for some 1 < p < @, i.e.
there are constants C7,Cs > 1 such that

][ |u —ug| dp < Cydiam B (][ gp)v ;
B C.B

where u: X — R is continuous and g: X — [0, 0o] is an upper gradient of
u. That means that for all points z, y € X and all rectifiable curves 7, ,
connecting them, we have the following inequality:

|u<x>—u<y>|s/ gds,

Yy

xr

Remark 5.1. (1) By Holder’s inequality we see that we have the strongest
Poincaré inequality if p = 1.

(2) Examples of spaces supporting a Poincaré inequality are again the usual
suspects: the Euclidean spaces, Carnot groups, Riemannian and Sub-
Riemannian manifolds.

(3) Tt is important to notice that the Poincaré inequality says much more than
the doubling condition. It means in fact that the space is in some sense
strongly connected.

Example 5.2. Let d the usual metric in the plain and p = £? the 2-dimensional
Lebesgue measure. Let further (X, d, ) be the metric space with X = X;UX> C
B2 where X; = B((—4,0),1) and X5 = B((4,0),1). We consider the function
u which 1s defined as the characteristic function of X5. Then ug = %
for a ball B big enough to contain X; and Xs. Clearly ¢ = 0 is an upper
gradient of u. We get

1/p
0<][|u—uB|7(C’1diamB<][ gp) =0
B C2B

for all Cy,C2 > 0. Therefore the space (X, d, i) does not satisfy any Poincaré
inequality.
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The following exercise is a difficult one. It shows that even if the space has
rather strong connectivity properties the Poincaré inequality may nevertheless

fail.

Exercise 5.3. Show that the Sierpinski carpet does not admit a (1,p)-Poincaré
inequality for any p > 1.

We would like to study derivatives of QS maps.

Definition 5.4 (Ly (), py (2)). If f: (X,d,p) = (X', d', ) is QS then we
denote by

L
L (2) := limsup M

r—0 r
the maximal derivative of f in x and by

pr () == limsup VAP T)))
P (B ()
the so called volume or measure derivative.
Remark 5.5. Let f,p’ the pull-back measure of p’:
Jod (B) = i ((E)), FCX
then g is the Radon-Nikodym derivative of fip/ with respect to u:

_dfy

So we know (see for example page 42 in [EG92])
[ @) ) < (). (5.1)

We have equality in (5.1) if and only if df.pu’ << dp.
By @Q-regularity and quasisymmetry we have

Ly (2,1)\° _ 4 (£ (B (x,7))
( ; ) SO B

1
loc*

and therefore p; € L
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f
7 T
Letting » — 0 we obtain
L? (z) < Cuy (z) for p-ae. z € X. (5.2)

Therefore L? € Ll or equivalently Ly € Le

loc*

One of the most important results regarding regularity of quasisymmet-
ric mappings in spaces with controlled geometry is the following theorem of
J. Heinonen and P. Koskela in [HK98]. This result is a powerful generalization
of Gehring’s theorem.

Theorem 5.6. Assume that

(X,d, p) and (X', d', ') are locally compact metric measure spaces,

X, X' are Q-regular for some @ > 1,
o (X,d, p) admits a (1,p)-Poincaré inequality for some p < Q and
o /X = X' isn-Q5S.

Then
m there exists po = po (X, X', 1) > Q such that

lLfELp for Q < p < po,

loc

m [ is absolutely continuous in measure: fop! << p and

wpp >0 for p-ae. x € X.

Remark 5.7. The fact that ) > 1 in the preceding theorem has to be necessary.
The Cantor function provides a counterexample in the case where Q) = 1.

Proof of Theorem 5.6. The idea of the proof is to use a reverse Holder inequal-
ity: we show that there exists C' > 0 such that

1/Q 1/p
(frro) <) "
B B

The problem is, that it is not clear if Ly is an upper gradient for u(z) =
d' (f (=), f(z0)), where #q is a fixed point in X. However if we define for £ > 0
the operator L5 as
L% == sup Liter) (l‘,?“)’
O<r<e r
we get the following result:
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Lemma 5.8. Let 29 € X be fized. Then L} is an upper gradient for

u(z) =d (f(z), f (o))

Proof. Let € > 0 be fixed and choose a rectifiable curve ~ joining two points z
and y in B. Suppose first that d = diam~ < . Then for each z € v we have

Lf (Z,d) _1Lf (l‘,d)
Ls > > -
r(2)2 d = d
by quasisymmetry. Thus

/L; ds > C_lwl (v) > C™ 'Ly (2, d) > C7Hd (f (z), f (v))

> C7Hd (f (2) ] (x0)) = d" (f (v) . ] (x0))] = C7F u () —u(y)].

If d = diam~ > ¢, then pick successive points zg,...,zy from ~ such that
zp = x, zny = y, and such that the diameter of v;, the portion of v between
z;—1 and @; 1s less than € for i = 1,..., N. As above,

N N
[rras=3 [ Lpasz ot S d s @) i)
i i=1 v i=1

>C7H (f(2), f(y) > C7H u(e) —u(y)].
The lemma follows. O

We are also able to tell something about the integrability of L5:
Q

1. with norm independent of € i.e. for every

Lemma 5.9. L§ belongs to weak-L
ball B in X we have

pl{reB: L% (=) >t} < Ct=%u' (f(B)).

Proof. Denote by E¢ the set of points  in B where L% (z) > ¢. Then by
Lemma 6.1, we can find a countable collection of disjoint balls B; = B (x;,r;)
such that 0 < r; <e¢,

Lf (l‘i, 7“2')

Ti

>t

and
E, C UbB; C 2B.

Thus by quasisymmetry and @-regularity,
p(E)<CY rd <Ctm9 " Ly (i)
SO 9Y W (F(By) SCECW (f(2B)) < CECW (£(B)),

as desired. Finally, because Ly < L%, the lemma follows. O
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Figure 3: Bound for ring

Let B = B(xzg,R) and u(z) = d'(f (%), f(z0)). By Lemma 5.8 and the

Poincaré inequality 1t follows that

1/p
][ |u —up| du < C1R <][ (L;)p du) .
B C2B

Letting ¢ — 0 we see that LZJ: does in the Poincaré inequality the job an upper
gradient normally does:

1/p
][ |lu—ug|du < CiR <][ LZJ: du) : (5.3)
B C32B

Notice that by Lemma 5.9 and p < @ we have that the right hand side of (5.3) is
finite. If we only had a (1, @)-Poincaré inequality we could not have concluded
this, since L5 is only in weak Lgc. Next we would like to estimate the left
hand side of the above inequality from below by an expression in L;. By the
quasisymmetry of f and the @-regularity of ;1 we have:

1 Qs 1

un =4 @) o) diz s [T ) de S G o R,
B 1(B) Jp\1p C

For the last step note, that y (B) and (B \ %B) are comparable by )-regularity

of p. To see this (see Figure 3) note that the measure of the grey ball is

comparable to the measure of the ring. Summarizing, we have obtained

1
up Z 5Lf (l‘o,R). (54)

For 0 < § < C% small enough and # € 6B by n-quasisymmetry of f the

following estimate holds:

u(z) =d (f(z), f (x0)) <n(8) Ly (wo, R) < %Lf (o, ) -
With (5.4) this gives

1
|u(z) —ug| > %Lf (zg, R).
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Now having estimated the integrand in (5.3), we turn to the integral on the left
side of (5.3).

[ u—usldnz [ u—unlduz 07 L e R ().
A B 5B
This leads to an upper bound of Ly (20, B) /R. Using (5.3) we obtain

L 1/p
MSQ |U—UB|d/,L§C<][LZ}d/,L)
R B B

1
Ca

Now we are ready to tackle the reverse Holder inequality:

(ﬁ 9 du)l/Q e (ﬁ " du)”Q S (%)UQ

Ly (20, R) ][ e
< (= L d .
< R = ( . t H

This is the reverse Holder inequality we wanted to prove which implies the first
statement of the theorem.
Let us prove the absolute continuity in measure. Starting from

Ly (20, R) L/
21 o, V) 12 d
R —0(73 1 oK

we obtaln

Q/p
L¢ (r0, R)® < CR® (][ Ly d/i) < CRQ][ LY dp = CB/ LY dp.
B B B

Since

(diam () < € [ 19 dn
B

the absolute continuity in measure follows. By general property of weights
satisfying a reverse Holder inequality we obtain pu; > 0 a.e. O

In Theorem 5.6 the condition that p < @ played an important role. It is a
natural question to see what happens if p = ). Results in this case are contained
in J. Tyson’s Ph. D. dissertation, see also [Tys98].

Theorem 5.10 (J. Tyson 1998-1999). Assume

o (X,d,p), (X,d,u) are locally compact metric measure spaces, which are
Q-reqular for Q > 1

o (X,d, pu) admits a (1,Q)-Poincaré inequality
o [ X = X isn-QS .
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Then
m (X', d p) admits a (1,Q)-Poincaré inequality
m [ s absolutely continuous in measure

ol << p.

6 Absolute continuity on curves

Besides higher integrability, an important regularity result for QS maps 1s the
absolute continuity on curves.

A main technical device in what is to come are covering theorems. The following
lemma is a classical covering theorem. See for example [Hei01] or [AT04].

Lemma 6.1 (5r-covering theorem). Assume
o (X,d) locally compact and A C X bounded
o F={B=B(z,r)} is a family of balls in X such that A C UperB.

Then there’s a finite or countable subfamily {B; = B (x;,r;): i=1,2...} of F
such that

m the balls B; are pairwise disjoint
m A CU;bB;, where 5B; = B (x;,57;).

Remark 6.2. There are also similar results stating that A can be covered by
balls with radii 3 4 ¢ times the original ones. However, for our needs, the above
statement suffices.

It’s easy to see that one can also extract a subfamily such that the balls them-
selves cover A and the balls with radii one fifth of the original ones are disjoint.

We would like to prove absolute continuity of QS mappings on curves. Qur
statements will not hold for every curve but for almost every curve. For saying
what almost every curve means, we must define an (outer) measure on curve
families. The next definition provides us with such a measure.

Definition 6.3 (p-modulus of a curve family). Let (X,d, ) be a metric
measure space, p > 1 and I' C X a curve family. The p-modulus of I" 1s defined
as

mod, I' := inf/ PP dp
PJX

where the infimum 1s taken over all admissible densities 1.e. Borel functions

p: X = [0, 00] for which
/pds >1
~

for all y € T.
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Remark 6.4. Sometimes one considers in the above definition only rectifiable
curves. Since the modulus of all unrectifiable curves is clearly zero, it does not
matter if we restrict ourselves to rectifiable curves or not.

Exercise 6.5. Let X = R", E C R"~1 x {0}, £~ (E) > 0 and define
I'g:={{y} x[0,1]: y€ E}.

Show that mod, I'g > 0 for all p > 1.

g

The result from [HK98] about absolutely continuity of QS mappings on
curves 1is stated as follows:

Theorem 6.6 (J. Heinonen, P. Koskela 1998). Assume that

o (X,d,pu) and (X', d', i) are locally compact spaces which are Q-regular for
some @ > 1

o X admits a (1,p)-Poincaré inequality for p < Q
o fisa QS homeo. f: X — X'
then f is absolutely continuous on QQ-a.e. curve in X, t.e. if

To={y: 1= X: foy:I— X' is not absolutely continuous}

then modg I'p = 0.

Recall: v: I — X is absolutely continuous if £ C I with £ (E) = 0 implies
H! (v (E)) = 0, where H! is the 1-dimensional Hausdorff measure on X.

Proof of Theorem 6.6. Let B C X be a ball. By Theorem 5.6 we know, that
L; is in LY (B) for some ¢ > Q).

Claim 1. L5 s in weak L7 (B) for L () = supgc,<. —57—
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To show this, we define
Ay ::{xEB: L;(l‘)>t}.

Our goal is to show that

C
1 (Ae) < —q/L}i dp.

For every x € A; we can choose a radius r, such that

Li(z,7y)

Tz

ey 3

By Lemma 6.1 (respectively Remark 6.2) we can choose a subfamily of balls
B; = B (#y,r;) such that

>t
2a

or equivalently

o A, CUB;

. %Biﬂ%BjIQfOI'i;éj.

We obtain the following estimate (note that in inequality (6.1) the right hand
side is just a constant and recall that y is Q-regular).

L i, T q/Q
02 O3 O (5 (L))

14 - r;

q/Q
§€ rZ»Q_q(/ L;{) §€Z/ L;{dugg/L;{du.
"5 B: 5= Ji, /b

Claim 2. fv L ds=00 Vy€Tly.

ot
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We assume by contradiction that fv L% ds < oo. Then since L is an upper
gradient of d' (f (¢), f (y)) by Lemma 5.8, we have

O (f (@) W) < / L5 ds. (6.2)

Yy

Y

By inequality (6.2) and [ L5 ds < oo we conclude that f oy 1s absolutely
continuous which contradicts that v € T'y.

For A > 0 define py := A~ L;. By Claim 2 py is admissible for I'y. This leads to
a bound of the @-modulus of I'y:

/p?dﬂ:/\Q/ (L;)Q dp—0 (A= 0).
X X

Consequently modg I'y = 0 and thus the theorem is proved. O

Exercise 6.7. Let f: R™ — R™ be Q5. Show that f is absolutely continuous on
almost every line parallel to the coordinate ares.
Hint: Use Ezxercise 6.5 and Theorem 6.6.

In the context of the Heisenberg group similar absolute continuity results
were obtained by A. Kordnyi and H. M. Reimann in [KR95]. G. D. Mostow
and G. A. Margulis generalized these results for Carnot-Carathéodory spaces,

see [MM95].

7 Hausdorff dimension distortion

In this section we investigate how quasiconformal maps distort the Hausdorff
dimension. The following Theorem can be found in [Bal01].

Theorem 7.1 (Z. B. 2000). Assume that
o (X,d, p) is a locally compact Q-regular space, @ > 1
o fi X=X QSandpuy € P, p>1

e A C X acompact subset with dim A = «.
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Then the following upper bound for dim f (A) holds:

. Qpa
dimf(A) < —————.
W=3g P—1)+a
Proof. The case o = ) is clear. So assume that a < ). Choose ¢ > 0 such that
a < a < Q. Thus we get

Q pa < Q p-a b
Qip—1l)+a " Qp-1+a

The statement follows from the following

Claim. H° (f (A)) = 0.

Since the dimension of A is a and @ > o we get H? (4) = 0. For fixed ¢ > 0
and d > 0 we can find balls B; = B (x;,7;) such that

o ACU;5B;

e diam f (5B;) < d
o) ri<e

e B,NB;=0,i#j.

Letting L; = Ly (x;,57;) and [; = {7 (2;,r;) we obtain by the quasisymmetry
of f that L; < Cl; for a fixed constant C'.

I L;

- /N

A f(A)

This gives us the following estimate
diam f (5B;) < 2Li < C-1; < Cp (f (B;)) 9.

Since by Theorem 5.6 f is absolutely continuous in measure, 1t follows by
Holder’s inequality and the @-regularity that

ﬂ(f(Bi)):/ ufduSCme’%l (/B u?dﬂ)p~

z z
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This leads to

b p.—l L
D (diam f (By))" < C- (Zr) (Z/_B u’}du) <C-e,
for at > 0. Letting ¢ — 0 conclude the claim. O

Remark 7.2. (1) Assume X = R? f:R? - R?is K-QC. By Theorem 3.8
we know that

K
= L 1 .
r=Jr € orp< T
We can calculate the following upper bound for the dimension:
2. ~dim (A 2K - dim (A
dim f (4) < ) = X, 1m(.) :
2. —|— dim(4) 24 (K —1)dim(A4)

(2) Since in general we don’t know the precise exponent of integrability p = p (n, K)
it is useful to have another quantitative result describing the Hausdorff di-
mension distortion. In this direction we note the following sharp result
on Holder continuity of QC mappings. If f: R? — R” is K-QC then
fe C®»=T . This holds also in Carnot groups as shown in [BHT02].

Theorem 7.3 (I. Holopainen, J. Tyson, Z. B. 2002). Let G be a Carnot

group and f: G — G be K-QC. Then f € CEZ7".

This theorem leads to the following corollary:

Corollary 7.4. Under the assumptions of Theorem 7.3 we have
K77 dimA < dim f (A) < K&7 dim A,
for ACG.

8 Quasiconformality and Quasisymmetry

We will later see that quasiconformality implies quasisymmetry in spaces which
have nice connectivity properties. In this section we formulate these connectivity
properties in terms of curve families in connection to the Poincaré inequality.

Definition 8.1 (Loewner space). Let (X, d, u) be a Q-regular space. We say
that X is Loewner if there exists a function ®: (0, 00) — (0, 00) such that

modg (B, F) > ® (1)
for all sets F, ' C X which are nondegenerate continua with

dist (F, F)
min {diam F, diam F'}’

t>A(EF)=
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The expression A (E, F') is some sort of relative distance, and modg (E, F) =
modg I'g,F, where I'g r is the curve family connecting F and F'.

e r

)

~ (J
\
\

)
/

&

F

Figure 4: Space, which is Loewner

Remark 8.2. In Loewner spaces we know the asymptotic behavior of ®.

1
D (t) ~ log i t small
® (1) ~ (logt)' ™% ¢ large.
Intuitively one can think that modg is a measure for the conductivity in X.

As the following proposition shows, Loewner spaces have nice connectivity
properties:

Proposition 8.3. Assume that (X,d, u) is Loewner. Then
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Figure 5: Space, which 1s not Loewner

m X is LLC (locally linearly connected) i.e. there exists a constant C > 1
such that for all x € X and v > 0 any two points in B (x,r) can be joined
by a rectifiable curve in B (x,Cr) and any two points in X \ B (z,r) can
be joined by a rectifiable curve in X \ B (z,7/C).

m X s quasiconver t.e. any two points in X can be joined by a curve whose
length is no more than a fired constant times the distance between the
ponts.

The following result of Heinonen and Koskela in [HK98] shows that there is
an equivalence between Loewner spaces and spaces admitting a (1, Q))-Poincaré
inequality.

Theorem 8.4. Assume that (X,d, u) is a locally compact, quasiconver space
which is Q-regular. Then it is Loewner if and only if it admits a (1, Q)-Poincaré
mequality.

We want now to investigate the connection between quasiconformality and
quasisymmetry. Recall that H; (2, r) is defined as

_ Ly (l‘,?“)

H =
! (x’r) ly (l‘,?“)
and a mapping is QC if

Hy () =limsup Hy (z,7) < H

r—0
for some H > 0. We would also like to consider the liminf of Hy (z, ).

Definition 8.5. Let f be a map between two metric spaces. Then we set

hy (x) = h?i}iglfo (z,7).
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In Euclidean spaces, as J. Heinonen and P. Koskela showed in [HK95], the
boundedness of A; already implies quasisymmetry.

Theorem 8.6 (J. Heinonen, P. Koskela 1995). Assume
e f:R®” > R” is a homeo.
o hy(x) < H forallz e R™

Then f 1s @QS.

The proof uses the Besicovitch covering theorem which enables us to select
from a family of balls a nice subfamily with bounded overlap. However the
Besicovitch theorem fails already in the Heisenberg group (see [KR95]). What
can one prove in more general spaces than Euclidean ones? If one knows that
the spaces are Loewner and H; is bounded, for example the following theorem

in [HK9S].

Theorem 8.7 (J. Heinonen, P. Koskela). Assume that
o X, X' are Loewner spaces
o /X — X’ is a homeo.
e Hi(z2)<H VereX, foraH>0.

Then f s locally @QS.

A natural question raised by Heinonen and Koskela in [HK95] is the validity
of Theorem 8.6 in non-Euclidean settings such as of Carnot groups. A partial
answer was provided in [BK00] using a quantity which is intermediate between

hy and H; defined below.

Definition 8.8. Let f be a map between two metric spaces. We define for ¢ > 1

Lt (z,9)
Hi(z,7)= sup 2P0
! %7‘<s<t7‘ lf (l‘,S)

ir

The result from [BKO00] is stated as follows:
Theorem 8.9 (P. Koskela, Z. B. 2000).

o Let X be Q-reqular, locally compact, unbounded and Loewner
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e Let f: X — X be a homeo. mapping bounded sets to bounded sets and
assume that
limian} (z,7) < H for somet > 1.
r—0
Under these assumptions, f is QS.

The question of Heinonen and Koskela was finally settled in [BKR04] which
we state as follows:

Theorem 8.10. We assume
o (X,d, p) locally compact, unbounded and Q-reqular for a @ > 1
o (X', d, ) locally linearly connected and unbounded
o X satisfies a (1,Q)-Poincaré inequality
e /X — X' is a homeo. mapping bounded sets to bounded sets such that

hf(l‘)SH zr e X.

Then f 1s @QS.

Remark 8.11. In the case when X satisfies a (1, 1)-Poincaré inequality a
stronger version of the result was proven in [BKR04] which allows a o-finite
HP~1 measure exceptional set in the definition of quasiconformality.

Proof of Theorem 8.10. Our goal is to show the existence of a H' > 1 such that
d(xo,a) < d(xo,b) = d'(f (x0), [ (a)) < H'd' (f (x0), J (b)) .
Let L :=d' (f (x0), f(a)) and I := d' (f (x0), f (b)). Assume L > 2¢?] (the other

case is trivial), where ¢ denotes the constant of the locally linear connectedness.
Let E' be a continuum connecting f (zo) and f (b) in B (f (x0),¢l) and F' be
a continuum connecting f (a) and some point far away in X \ B (f (o), %L)
Set £ = f~'(F') and F = f~!(F'). By the Loewner property there exists a
C5 > 0 such that

Ch < HlOdQ (FE,F) . (81)

o b
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We would also like to control modg (I'g ) from above. The crucial result used
in the proof is the following:

Lemma 8.12 (Main Lemma).

L\'"¢
HlOdQ (FE,F) S Cl (log 7) (82)

By (8.1) and (8.2) we obtain a constant C5 such that

1-Q
Cs < (log %) ,

which shows

~] t~
IA
(3]

3
T

9

and this is what we want to prove.
Proof of Main Lemma. Our task is to find p: X — [0, o0] such that
(1) fvpds >1 forally el'gr

(2) [y p@du < Ci(logk)' ™%,

But how can we find such a p? To indicate the idea of the proof we assume first
that we are in the Euclidean setting: X = X’ = R"” and z¢ = f(2g) = 0. In

this case the right admissible density p satisfying (1) and (2) is the following
”logarithmic derivative” of f:

plx) = {<1°g 7R e e AL (8.3)

0 otherwise,

where A (L,1) is the ring domain A (L,l) = B(0,L) \ B(0,l). Let us check
that p is an admissible function for the modulus. Let y: [a, 6] = R" be a curve
parameterized by arc length. Then

(o) s,
- (is %)_Hogw o=
= (%) s
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Since @ = n and dp = dx is the Lebesgue measure:

[ o= (o) " [ L,

Since f is QC we have |Df (J:)|Q < Hpyy (z) and therefore

-Q
/ pCdu< H <log £) / i (x)Q dx
" { B |f (2)]
-Q
cobet)
{ . Jyl

-Q
L L
=H (10g 7) log 7,

where we substituted f (z) by y and assumed that p = 0 outside f=! (B (0, L)).

Let’s turn to the metric version of p. To discretize the expression (8.3) we
have to use an appropriate covering B by ”good balls” associated to the mapping
f. Our formula for p then looks like:

B L diam f (B) . 1 . .
p@_co%z) — ~diam B Tt ([ (wa), 7 (B)) 22 @)

where B has to be a ”good covering” by balls that will be defined below and C'
diam f(B)

T~ Plays the role of

is an appropriately chosen large constant. Note that
1 1

|Df (l‘)| and W the One.of m . N

What do we mean by "good covering”? Here are our required conditions on

B =A{B(zi,ri)}ies-
Definition 8.13.

(1) B; should be ”good balls” i.e. f(B;) should be roundish:
1
Vi:=B (f (i), ﬁdiamf(Bi)) C f(B)

(2) Ui f (B;) covers A (L, 1)
(3) %Biﬂ%szw i+

(4) ogViN gV =0 fori#j.

To realize properties (1), (2) and (3) it is enough to apply the classical 5r
covering lemma, [Hei01] and the condition hf (z) < H. Property (4) however
requires that the images of B; are also separated in some sense, which is not
guaranteed by the 5r covering theorem. To fix this problem we state a better
covering lemma which takes care of the above difficulty.



Figure 6: property (

e

Figure 7: property (4)
f

T
Q B; f(Bi)
N>
Bj f(B])
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Lemma 8.14. Assume
o (X,d, p) is Q-regular
o A C X bounded
o forx € A there’s a ball B (z,r;)

Then there exists B = {B; : i=1,2,...}, finile or countable, where B; =
B (x;,r;) such that

2) %Biﬂ%szw,i?fj
3) for (i,j), i £ j one of the following two alternatives holds at least:

(a) x; & B(x;,r;) and B (x;,7;) \ B (25,75) #0
(b) x; & B(xi,r:) and B (xi,1:) \ B(xj,715) # 0.

Figure 8: Example on the left does not fulfill condition 3). Example on the
right does.

For the proof of Lemma 8.14 we refer to [BKR04].
We can use now the previous result to prove condition (4) for the covering
B from Lemma 8.14.

Lemma 8.15. We require
o [ X — X' a homeo. such that hy (v) < Hy (z) forz € X
o {B;:1=1,2...} salisfies Lemma 8.14

o and

V=B (f (a:), %diamf(Bi)) Cr(B).
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In this case ] ]
o g =0 i#d

Suppose B is a good covering according to Definition 8.13 which is guaranteed
by Lemma 8.15. Consider

B L\ 7' diam £ (B) 1 . .
p@_co%z) — ~diam B Tt ([ (wo) 7 (B)) 22 @)

Suppose further that % is huge and divide the interval between ! and L:

1,101,1001, ..., 10" =~ L,

where ng & log %

Choose the balls B; so small that

1y
1000

diam f (B;) <
and divide B into parts as follows:
B; ={BekB: f(B)ﬂAj £0},
where A; = F(f (z0), 10j+1l) \ B (f(a:o) , 10jl) is the ring with center f (zg)
and radii 107/ and 107+,
We have to show:

1) fvpd521



2) [xpdu<C (log %)1_Q.

Condition 1) is shown by the following calculation:

B AN diam f (B) 1
/Wpds =C (10g 7) /WBeB diam B dist (f (o), f(B))

Noting that

we conclude

for C' big enough.

2B

X2B ds

32
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The proof of 2) goes as follows:

Q
o E)_Q diam f (B) 1
/X pedp = C | log { /X BeB diam B dist (f (xo) ’f(B))XZB i

AN diam f (B) 1 ’
< C(log 7 /X (BeB diam B dist (f (o) ,f(B))X%B) i
~ AN diam f (B) 1 ¢
=C|log7 ;;s/%B ( diam B dist (f (o) af(B))) i

9 (diam f (B))9

)
)
) BZEB dist (f (o) , f (B))®
)
)
)

- # (V)
;B dist (f (zo) , f (B))“
Y # (Vs)

—Q 2o (10i+1])? AN
% < <log —) ng

-Q 1-Q
=C <log %) <log %) =C (log %) .

In the first inequality we used the following fact (see [HeiOl, Exercise 2.10]):

Exercise 8.16. Suppose that B = {By, B, ...} is a countable collection of balls
in a doubling space (X, d, 1) and that a; > 0 are real numbers. Show that

/X (Z amw,)p dp < C(A,p,u)/X (Z aiXB,)p dp

B B

forl<p<ooand A > 1.
Hint: Use the mazimal function theorem together with the duality of LP (i) and
L (p) forp=t+q¢7t = 1.

In the equality of the third row Condition (3) of B was used and next the

regularity of p has been applied. Afterwards we used the regularity of p’ and
Condition (1) and (4).
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If we permit an exceptional set F, we need some new ideas to prove the
above result. The following Theorem is in [BKRO04].

Theorem 8.17. Let X and X' be proper, locally Ahlfors Q-reqular metric
spaces, ) > 1. Suppose that a homeomorphism f: X — X' satisfies hy (z) < 00
for all x € X\ E, where E has o-finite (Q — 1)-dimensional Hausdorff measure

and that hy (z) < H < 0o almost everywhere. Then f € VVI})’Cl (X; X').
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