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Derivability vs Admissibility

Consider a system defined by two rules:

Nat(0) and Nat(x) ⊲ Nat(s(x)).

The following rule is derivable :

Nat(x) ⊲ Nat(s(s(x))).

However, this rule is only admissible :

Nat(s(x)) ⊲ Nat(x).

But what if we add to the system:

Nat(s(−1)) ???
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Background: Lorenzen’s Idea

The notion of an admissible rule was introduced
explicitly by Paul Lorenzen in the 1950s in the
context of intuitionistic propositional logic IPC.

P. Lorenzen. Einführung in die operative Logik und Mathematik.
Springer, 1955.

Lorenzen calls a rule R admissible in a system S, if adding R to the
primitive rules of S does not enlarge the set of theorems.

His “operative interpretation” is that a rule R is admissible in S if every
application of R can be eliminated from the extended calculus.

P. Schroeder-Heister. Lorenzen’s operative justification of intuitionistic logic.
One Hundred Years of Intuitionism (1907-2007). Birkhäuser, 2008.
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Background: Admissibility in IPC

Examples of admissible but not derivable rules of IPC include the
“independence of premises” rule

{¬p → (q ∨ r)} ⊲ (¬p → q) ∨ (¬p → r)

and the “disjunction property”

{p ∨ q} ⊲ {p,q}.

It was shown by Vladimir Rybakov (among
other things) that the set of admissible rules of
IPC is decidable but not finitely axiomatizable.

Admissibility of Logical Inference Rules.
V. Rybakov. Elsevier, 1997.
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Background: The Visser Rules

Iemhoff and Rozière proved independently that the “Visser rules”

{
n
∧

i=1

(pi → qi ) → (pn+1 ∨ pn+2)} ⊲
n+2
∨

j=1

(

n
∧

i=1

(pi → qi) → pj) n = 2, 3, . . .

plus the disjunction property provide a “basis” for admissibility in IPC.

P. Rozière. Regles admissibles en calcul propositionnel intuitionniste.
Ph.D. thesis, Université Paris VII, 1992.

R. Iemhoff. On the admissible rules of intuitionistic propositional logic.
Journal of Symbolic Logic 66(1):281–294, 2001.

Relationships between unification, admissibility, and projectivity in IPC
have been studied and characterized by Ghilardi.

S. Ghilardi. Unification in intuitionistic logic.
Journal of Symbolic Logic 64(2):859–880, 1999.
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Background: The Disjunctive Syllogism

In relevant logics such as R and RM, the “disjunctive syllogism”

{¬p, p ∨ q} ⊲ q

is admissible but not derivable.

A. R. Anderson and N. D. Belnap. Entailment.
Princeton University Press, 1975.
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Background: Admissibility in Modal Logics

In the modal logics K and K4, the rule

{�p} ⊲ p

is admissible and non-derivable, while Löb’s rule

{�p → p} ⊲ p

is admissible and non-derivable in K, but not admissible in K4.

E. Jeřábek. Admissible Rules of Modal Logics.
Journal of Logic and Computation 15:411–431, 2005.
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Background: Admissibility in Algebra

For classes of algebraic structures, rules correspond to clauses
(or quasiequations ) and admissibility to validity in free algebras .

For example, the quasiequation

{x + x ≈ 0} ⊲ x ≈ 0

is not valid in all abelian groups (e.g., Z2)

but is valid in all free abelian groups, since

ϕ+ ϕ ≈ 0 is valid in Z =⇒ ϕ ≈ 0 is valid inZ.
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Background: Admissibility in Lattices

The following clauses are valid in all free lattices , but not all lattices

Whitman’s condition

{x ∧ y 4 z ∨ w} ⊲ {x ∧ y 4 z, x ∧ y 4 w , x 4 z ∨ w , y 4 z ∨ w}.

P. Whitman. Free lattices.
Annals of Mathematics 42: 325–329, 1941.

Jónsson’s semi-distributivity property

{x ∧ y ≈ x ∧ z} ⊲ x ∧ y ≈ x ∧ (y ∨ z).

B. Jónsson. Sublattices of a free lattice.
Canadian Journal of Mathematics 13: 256–264, 1961.
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Background: Admissibility in Proof Theory

In Gentzen’s sequent calculus for propositional classical logic,
applications of the cut rule can be eliminated from derivations.

G. Gentzen. Untersuchungen über das Logische Schliessen.
Mathematische Zeitschrift 39:176–210,405–431,1935.

Saying that {ϕ1, . . . , ϕn} ⊲ ψ is derivable in a sequent calculus when
⇒ϕ1 ... ⇒ϕn

⇒ψ
is derivable, it follows that the transitivity rule

{p → q, q → r} ⊲ r

is admissible but not derivable in the cut-free system.
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This Tutorial. . .

. . . consists of six parts:

(I) Admissibility in Logic

(II) An Algebraic Perspective

(III) Unification and Admissibility

(IV) Proof Theory for Admissible Rules

(V) A First-Order Framework

(VI) Eliminations and Applications.
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Part I

Admissibility in Logic
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Rules

We will make use of

propositional languages L consisting of connectives such as
∧,∨, ·, ,→,¬,⊥,⊤ with specified finite arities

finite sets (denoted Γ,∆) of L-formulas (denoted ψ,ϕ, χ) from
FmL built from a countably infinite set of variables (denoted p,q, r )

endomorphisms on FmL called L-substitutions (denoted σ).

Definition
An L-rule is an ordered pair of finite sets of L-formulas, written

Γ ⊲ ∆,

called single-conclusion if |∆| = 1, multiple-conclusion in general.
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Logics and Consequence

Definition
A logic L on FmL is a set of single-conclusion L-rules satisfying
(writing Γ ⊢L ∆ for (Γ,∆) ∈ L):

{ϕ} ⊢L ϕ (reflexivity)

if Γ ⊢L ϕ, then Γ ∪ Γ′ ⊢L ϕ (monotonicity)

if Γ ⊢L ϕ and Γ ∪ {ϕ} ⊢L ψ, then Γ ⊢L ψ (transitivity)

if Γ ⊢L ϕ, then σΓ ⊢L σϕ for any L-substitution σ (structurality).

An L-theorem is a formula ϕ such that ∅ ⊢L ϕ (abbreviated as ⊢L ϕ).

(Note: A finitary structural consequence relation is obtained by
fixing for Γ ∪ {ϕ} ⊆ FmL: Γ ⊢L ϕ iff Γ′ ⊢L ϕ for some finite Γ′ ⊆ Γ.)
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{ϕ} ⊢L ϕ (reflexivity)

if Γ ⊢L ϕ, then Γ ∪ Γ′ ⊢L ϕ (monotonicity)

if Γ ⊢L ϕ and Γ ∪ {ϕ} ⊢L ψ, then Γ ⊢L ψ (transitivity)

if Γ ⊢L ϕ, then σΓ ⊢L σϕ for any L-substitution σ (structurality).

An L-theorem is a formula ϕ such that ∅ ⊢L ϕ (abbreviated as ⊢L ϕ).

(Note: A finitary structural consequence relation is obtained by
fixing for Γ ∪ {ϕ} ⊆ FmL: Γ ⊢L ϕ iff Γ′ ⊢L ϕ for some finite Γ′ ⊆ Γ.)
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Multiple-Conclusion Consequence

Definition
An m-logic L on FmL is a set of L-rules satisfying:

{ϕ} ⊢L ϕ (reflexivity)

if Γ ⊢L ∆, then Γ ∪ Γ′ ⊢L ∆′ ∪∆ (monotonicity)

if Γ ⊢L {ϕ} ∪∆ and Γ ∪ {ϕ} ⊢L ∆, then Γ ⊢L ∆ (transitivity)

if Γ ⊢L ∆, then σΓ ⊢L σ∆ for any L-substitution σ (structurality).
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Derivable and Admissible Rules

Definition
For a logic L on FmL, an L-rule Γ ⊲∆ is

L-derivable , written Γ ⊢L ∆, if Γ ⊢L ϕ for some ϕ ∈ ∆.

L-admissible , written Γ |∼L ∆, if for every L-substitution σ:

⊢L σϕ for all ϕ ∈ Γ =⇒ ⊢L σψ for someψ ∈ ∆.

(Note: ⊢L and |∼L are m-logics.)
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Example: Łukasiewicz Logic

Łukasiewicz logic Ł with negation ¬ and implication → can be
defined via an axiom system or, semantically, via a matrix with truth
values [0,1], designated truth value 1, and interpretations:

¬x = 1 − x and x → y = min(1,1 − x + y).

Then for example:

{p → ¬p, ¬p → p} 6⊢Ł q, but {p → ¬p, ¬p → p} |∼Ł q.

Also, defining ϕ · ψ = ¬(ϕ→ ¬ψ) (so that x · y = max(0, x + y − 1)):

{p → (p · p)} 6⊢Ł {p,¬p}, but {p → (p · p)} |∼Ł {p,¬p}.
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Another Characterization of Admissibility (1)

Lemma
The following are equivalent for any logic L on FmL:

(1) Γ ⊲ ϕ is L-admissible.

(2) For the smallest logic L∗ on FmL containing L and (Γ, {ϕ}):

⊢L ψ iff ⊢L∗ ψ.
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Another Characterization of Admissibility (2)

Lemma
The following are equivalent for any logic L on FmL:

(1) Γ ⊲∆ is L-admissible.

(2) For the smallest m-logic L∗ on FmL containing L and (Γ,∆):

⊢L {ψ1, . . . , ψn} iff ⊢L∗ {ψ1, . . . , ψn}.
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Structural and Universal Completeness

Definition
A logic L on FmL is

structurally complete if for all single-conclusion L-rules Γ ⊲ ϕ

Γ ⊢L ϕ ⇔ Γ |∼L ϕ

(or, any logic extending L has new theorems)

universally complete if for all L-rules Γ ⊲∆

Γ ⊢L ∆ ⇔ Γ |∼L ∆

(or, any m-logic L′ extending L has new consequences ⊢L′ ∆).

W. A. Pogorzelski. Structural completeness of the propositional calculus.
Bulletin de L’Académie Polonaise des Sciences 19: 349–351 (1971).
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Classical Logic is Structurally Complete

Theorem (Pogorzelski)
Classical propositional logic CPCis structurally complete.

Proof.
Suppose that Γ 6⊢CPCϕ. Then for some classical evaluation e, we have
e(ψ) = 1 for all ψ ∈ Γ and e(ϕ) = 0. Let:

σp =

{

⊤ if e(p) = 1

⊥ if e(p) = 0.

It follows inductively that ⊢CPCσψ ↔ ⊤ iff e(ψ) = 1, and ⊢CPCσψ ↔ ⊥
iff e(ψ) = 1. So ⊢CPCσψ for all ψ ∈ Γ, but 6⊢CPCσϕ. I.e., Γ 6 |∼CPCϕ.
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Unification and Admissibility

Definition
An L-unifier of Γ ⊆ FmL is an L-substitution σ such that

⊢L σϕ for all ϕ ∈ Γ.

In this case, Γ is said to be L-unifiable .

Notice that for a non-trivial logic L:

Γ is L-unifiable iff Γ ⊲ ∅ is not L-admissible.
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Exact Unifiers

Definition
An L-unifier σ of Γ ⊆ FmL is called exact if for all ϕ ∈ FmL:

Γ ⊢L ϕ iff ⊢L σϕ.

In this case, Γ is said to be L-exact .

Lemma
If Γ is L-exact, then Γ |∼L ∆ iff Γ ⊢L ∆.

Proof.
(⇐) If Γ ⊢L ∆, then Γ ⊢L ϕ for some ϕ ∈ ∆. So σΓ ⊢L σϕ for any
substitution σ, and if ⊢L σψ for each ψ ∈ Γ, then ⊢L σϕ. I.e., Γ |∼L ∆.

(⇒) Let σ be an exact L-unifier of Γ. If Γ |∼L ∆, then ⊢L σϕ for some
ϕ ∈ ∆. So Γ ⊢L ϕ and Γ ⊢L ∆ as required.
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Projective Unifiers

Suppose that L has an implication → satisfying {p,p → q} ⊢L q.

Definition
An L-unifier σ of Γ ⊆ FmL is called projective if for all ϕ ∈ FmL:

Γ ⊢L σϕ→ ϕ and Γ ⊢L ϕ→ σϕ.

In this case, Γ is said to be L-projective .

Notice that every L-projective unifier of Γ ⊆ FmL is

L-exact

a most general L-unifier of Γ

an L′-projective unifier of Γ for each logic L′ extending L.
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Hereditary Structural Completeness

Definition
A logic L on FmL is called

hereditarily structurally complete if each logic on FmL

extending L is structurally complete.

hereditarily universally complete if each logic on FmL

extending L is universally complete.

Notice that if Γ is L-projective, then for any logic L′ extending L:

Γ |∼L′ ∆ iff Γ ⊢L′ ∆.

In particular, if all finite Γ ⊆ FmL are

L-exact, then L is universally complete

L-projective, then L is hereditarily universally complete.
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Prucnal’s Trick

For each implication-conjunction formula ϕ of IPC, define

σ(p) = ϕ→ p for each variablep.

Then inductively, for each implication-conjunction formula ψ:

⊢IPC σψ → (ϕ→ ψ) and ⊢IPC (ϕ→ ψ) → σψ.

But then ⊢IPC σϕ and, using properties of IPC:

ϕ ⊢IPC σψ → ψ and ϕ ⊢IPC ψ → σψ.

So σ is a projective IPC¬,→-unifier of ϕ.

Theorem (Prucnal)

The {→,∧} fragment of IPC is hereditarily universally complete.

T. Prucnal. On the structural completeness of some pure implicational
propositional calculi. Studia Logica 32(1): 45–50, 1973.
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Wroński’s Observation

In fact, the {→}, {→,∧}, and {→,∧,¬} fragments of all
intermediate logics are hereditarily universally complete.

However, this is not the case for the {→,¬} fragments; e.g.

{p → ¬q, (¬¬p → p) → r , (¬¬q → q) → r} ⊲ r

is admissible but not derivable in the {→,¬} fragment of IPC.

A. Wroński. On factoring by compact congruences in algebras of certain varieties
related to the intuitionistic logic. Bulletin of the Section of Logic 15(2) (1986) 48–51.
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Other Cases

Hereditarily structurally complete intermediate logics and transitive
modal logics have been fully characterized by Citkin and Rybakov.

Admissibility of Logical Inference Rules. V. Rybakov. Elsevier, 1997.

Medvedev’s logic is the only known intermediate logic that is
structurally complete but not hereditarily structurally complete.

Structural completeness of Medvedev’s propositional calculus. T. Prucnal.
Reports on Mathematical Logic 6:103–105, 1976.

Prucnal’s trick extends to establish hereditary universal
completeness for certain fragments of relevant logics.

A structurally complete fragment of relevant logic. J. K. Slaney and R. K. Meyer.
Notre Dame Journal of Formal Logic 33:561–566, 1992.
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Further Questions

How can we characterize admissible rules when structural or
universal completeness fails?

How can admissibility be characterized algebraically?

Are admissible rules useful for anything?
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Part II

An Algebraic Perspective
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The Idea

For classes of algebraic structures:

rules correspond to clauses

single-conclusion rules correspond to quasiequations

logics correspond to quasivarieties

admissibility corresponds to validity in free algebras .
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Formulas and Equations

We fix an algebraic language L and consider classes of L-algebras .

FmL(X ) denotes the formula algebra of L over a set of variables X ,
writing just FmL when X is countably infinite.

An L-equation is an ordered pair of L-formulas, written ϕ ≈ ψ.
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Clauses

An L-clause is an ordered pair of finite sets of L-equations, written

Γ ⊲ ∆,

called an L-quasiequation if |∆| = 1 and a positive L-clause if Γ = ∅.
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Validity

An L-clause Γ ⊲∆ is valid in an L-algebra A, written

Γ |=A ∆,

if for every homomorphism g : FmL → A,

g(ϕ) = g(ψ) =⇒ g(ϕ′) = g(ψ′)

for all ϕ ≈ ψ ∈ Γ for someϕ′ ≈ ψ′ ∈ ∆.

An L-clause Γ ⊲∆ is valid in a class K of L-algebras, written Γ ⊢L ∆, if
Γ |=A ∆ for each A ∈ K.
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Admissibility

A K-unifier of a set of L-equations Γ is a homomorphism
σ : FmL → FmL such that:

|=K σ(ϕ) ≈ σ(ψ) for all ϕ ≈ ψ ∈ Γ.

An L-clause Γ ⊲∆ is K-admissible if

σ is a K-unifier of Γ =⇒ σ is a K-unifier of some ϕ ≈ ψ ∈ ∆.
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Example: A Three Element Algebra

Consider the Kleene lattice C3 = 〈{−1,0,1},∧,∨,¬〉 described by:

b

b

b

−1

0

1

Then (since no formula is constantly 0)

{p ≈ ¬p} ⊲ p ≈ q is C3-admissible, but {p ≈ ¬p} 6|=C3 p ≈ q.

Also the following quasiequation is C3-admissible, but not C3-valid:

{¬p ≤ p, p ∧ ¬q ≤ ¬p ∨ q} ⊲ ¬q ≤ q

where ϕ ≤ ψ stands for ϕ ∧ ψ ≈ ϕ.
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The Congruence ∼K

For a class of L-algebras K and FmL(X ) 6= ∅, define for ϕ,ψ ∈ FmL(X ):

ϕ ∼K ψ iff |=K ϕ ≈ ψ.

Then ∼K is a congruence on FmL(X ), i.e., an equivalence relation
satisfying for each n-ary function symbol f of L:

ϕ1 ∼K ψ1
... =⇒ f (ϕ1, . . . , ϕn) ∼K f (ψ1, . . . , ψn).

ϕn ∼K ψn
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Free Algebras

The quotient algebra

FK(X ) = FmL(X ) / ∼K

with universe FK(X ) = {[ϕ]∼K | ϕ ∈ FmL(X )} and operations

f ([ϕ1]∼K , . . . , [ϕn]∼K) = [f (ϕ1, . . . , ϕn)]∼K

is called the X -generated free algebra of K.

In particular, FK(ω) is the free algebra on countably infinitely many
generators of K.
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The Canonical Homomorphism

The canonical homomorphism

hK : FmL → FK(ω)

maps each L-formula to its equivalence class in the free algebra,

hK(ϕ) = [ϕ]∼K .

Then for each L-equation ϕ ≈ ψ:

|=K ϕ ≈ ψ iff |=FK(ω) ϕ ≈ ψ iff hK(ϕ) = hK(ψ). (1)

S. Burris and H. P. Sankappanavar. A Course in Universal Algebra.
Graduate Texts in Mathematics 78. Springer, 1981.
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Graduate Texts in Mathematics 78. Springer, 1981.
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Free Algebras and Admissibility

Lemma

Γ ⊲∆ is K-admissible iff Γ |=FK(ω) ∆.

Proof.
(⇒) Suppose that Γ ⊲∆ is K-admissible and consider a homomorphism
g : FmL → FK(ω) such that g(ϕ) = g(ψ) for all ϕ ≈ ψ ∈ Γ.

Any map sending each variable p to a member of the equivalence
class g(p) extends to a homomorphism σ : FmL → FmL.

Since hK(σ(p)) = g(p) for each variable p, it follows that hK ◦ σ = g.

So for each ϕ ≈ ψ ∈ Γ, also hK(σ(ϕ)) = hK(σ(ψ)) and by (1),
|=K σ(ϕ) ≈ σ(ψ). Hence |=K σ(ϕ

′) ≈ σ(ψ′) for some ϕ′ ≈ ψ′ ∈ ∆.

But then again by (1), g(ϕ′) = hK(σ(ϕ
′)) = hK(σ(ψ

′)) = g(ψ′).

(⇐) Very similar (in fact, a bit easier).
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Varieties

A variety is a class of L-algebras axiomatized by equations.

Varieties are also (Birkhoff’s theorem) the classes of L-algebras closed
under taking homomorphic images , subalgebras , and products .

V(K) = HSP(K) is the smallest variety containing K, and

V(K1) = V(K2) iff the sameL-equations are valid inK1 andK2.

In particular, for any class of L-algebras K:

V(K) = V(FK(ω)).
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Quasivarieties

A quasivariety is a class of L-algebras axiomatized by
quasiequations.

Quasivarieties are also the classes of L-algebras closed under taking
isomorphic images , subalgebras , products , and ultraproducts .

Q(K) = ISPPU(K) is the smallest quasivariety containing K, and

Q(K1) = Q(K2) iff the sameL-quasiequations are valid inK1 andK2.

In particular, for any class of L-algebras K:

FK(ω) = FQ(K)(ω).
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Admissibility Algebraically

Theorem

The following are equivalent:

(i) Γ ⊲ ϕ ≈ ψ is K-admissible

(ii) Γ |=FK(ω) ϕ ≈ ψ

(iii) V(K) = V({A ∈ Q(K) | Γ |=A ϕ ≈ ψ}).
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Structural Completeness Algebraically

Definition
If K-admissibility and K-validity coincide for L-quasiequations, that is,

Q(K) = Q(FK(ω)),

then K is called structurally complete .

C. Bergman. Structural completeness in algebra and logic.
In Algebraic Logic, Colloquia Mathematica Societatis János Bolyai, 54:59–73, 1991.
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Proving Structural Completeness

In our proof that classical propositional logic is structurally complete,
we essentially gave an embedding of the Boolean algebra 2 into F2(ω).

More generally, if each A ∈ K embeds into FK(ω), then

K ⊆ IS(FK(ω)) ⊆ Q(FK(ω)) ⊆ Q(K),

so Q(K) = Q(FK(ω)) and K (also Q(K)) is structurally complete .

J. S. Olson, J. G. Raftery, and C. J. Van Alten. Structural completeness in
substructural logics. Logic Journal of the IGPL 16(5): 453–495, 2008.

P. Cintula and G. Metcalfe. Structural completeness in fuzzy logics.
Notre Dame Journal of Formal Logic 50(2): 153–183, 2009.
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Example: A Four Element Algebra

The Kleene lattice C4 = 〈{−2,−1,1,2},∧,∨,¬〉 with the usual linear
order and ¬x = −x can be embedded into FC4(ω) as follows:

b

b

b

b

C4

-2

-1

1

2

So C4 (equivalently, Q(C4)) is structurally complete.
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Checking Admissibility in Finite Algebras

For a finite L-algebra A:

Γ ⊲ ϕ ≈ ψ is A-admissible iff Γ |=FA(|A|) ϕ ≈ ψ.

Also, FA(|A|) is finite, so checking A-admissibility is decidable .

But FA(n) can be big even for small |A| and n, e.g., |FC3(2)| = 82. . .

However, for any (perhaps small!) subalgebra B of FA(|A|) such that
A is a homomorphic image of B:

Γ ⊲ ϕ ≈ ψ is A-admissible iff Γ |=B ϕ ≈ ψ.
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A Simple Procedure

For a finite algebra A:

(i) Compute the set S(FA(|A|)) of subalgebras of FA(|A|).

(ii) Construct the set Adm(A) = {B ∈ S(FA(|A|)) | A ∈ H(B)}.

(iii) Find a proof system to check validity in a smallest B ∈ Adm(A).

Steps (i)-(ii) have been implemented using the Algebra Workbench;
step (iii) can be implemented using, e.g., MUltlog/MUltseq or 3TAP.

G. Metcalfe and C. Röthlisberger. Unifiability and admissibility in finite algebras.
Proceedings of CiE 2012, LNCS 7318, 485–495. Springer, 2012.
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Example: A Three Element Algebra

Consider, e.g., S→
3 = 〈{−1,0,1},→〉 with operation table:

→ -1 0 1
-1 1 1 1
0 -1 0 1
1 -1 -1 1

The procedure discovers a subalgebra of the 60-element free algebra
FS→

3
(2) isomorphic to S→

3 , and hence that S→
3 is structurally complete.

Structural completeness has also been confirmed for the 3-element
implicational Łukasiewicz algebra, Gödel algebra, and Stone algebra.
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Almost Structural Completeness

A is called almost structurally complete if A-admissibility coincides
with A-validity for quasiequations with A-unifiable premises; that is

Γ ⊲ ϕ ≈ ψ is A-admissible& Γ is A-unifiable =⇒ Γ |=A ϕ ≈ ψ.

Lemma
For any finite algebra A and subalgebra B of FA(1):

A is almost structurally complete iff Q(FA(|A|)) = Q(A × B).
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Example: A Four Element Algebra

For the De Morgan lattice D4 = 〈{⊥,a,b,⊤},∧,∨,¬〉 described by

b

b b

b

⊥

a b

⊤

the procedure finds an algebra in Adm(D4) isomorphic to D4 × 2 with
2 ∈ S(FD4(1)), so D4 is almost structurally complete.

Other almost structurally complete algebras include the 3-element
Łukasiewicz algebra and S→

3 with an involutive negation.
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Other Examples

For the De Morgan algebra

Db
4 = 〈{⊥,a,b,⊤},∧,∨,¬,⊥,⊤〉

the procedure finds a smallest 10-element algebra in Adm(D4).

For the Kleene lattice and Kleene algebra

C3 = 〈{⊤,a,⊥},∧,∨,¬〉 and Cb
3 = 〈{⊤,a,⊥},∧,∨,¬,⊥,⊤〉

the procedure finds smallest 4-element chains.

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 52 / 107



Other Examples

For the De Morgan algebra

Db
4 = 〈{⊥,a,b,⊤},∧,∨,¬,⊥,⊤〉

the procedure finds a smallest 10-element algebra in Adm(D4).

For the Kleene lattice and Kleene algebra

C3 = 〈{⊤,a,⊥},∧,∨,¬〉 and Cb
3 = 〈{⊤,a,⊥},∧,∨,¬,⊥,⊤〉

the procedure finds smallest 4-element chains.

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 52 / 107



Experiments in Admissibility

A |A| Quasivariety Q(A) Free algebra |Output Algebra|
Ł3 3 algebras for Ł3 |FA(1)| = 12 6
Ł→

3 3 algebras for Ł→

3 |FA(2)| = 40 3
B1 3 Stone algebras |FA(1)| = 6 3
Cb

3 3 Kleene algebras |FA(1)| = 6 4
C3 3 Kleene lattices |FA(2)| = 82 4

S→¬

3 3 algebras for RM→¬ |FA(2)| = 264 6
S→

3 3 algebras for RM→ |FA(2)| = 60 3
G3 3 algebras for G3 |FA(2)| = 18 3
D4 4 De Morgan lattices |FA(2)| = 166 8
Db

4 4 De Morgan algebras |FA(2)| = 168 10
S→¬e

4 4 Q(S→¬e
4 ) |FA(1)| = 18 6

B2 5 Q(B2) |FA(1)| = 7 5
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A Last Technical Comment

Let Q be a L-quasivariety.

A ∈ Q is called exact if it embeds into a free algebra of Q.

Given a finite set of L-equations Γ over a finite set of variables X ,
define a congruence on FQ(X ) by

[ϕ] ∼Γ [ψ] iff Γ |=Q ϕ ≈ ψ.

If the finitely presented algebra F Q(X ) / ∼Γ is exact, then

Γ |=Q ∆ iff Γ |∼Q ∆.

A ∈ Q is projective if it is the retract of a free algebra of Q (i.e.,
embeds into and is the homomorphic image of a free algebra).
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Part III

Unification and Admissibility
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The Idea

Admissibility is a more general problem than unification, but in certain
cases we can “reduce” admissibility questions to unification questions.

For convenience, we give a “logical” account of unification.

In particular, we consider a modal or intermediate logic L and can
therefore treat formulas rather than finite sets of formulas.

S. Ghilardi. Unification in intuitionistic logic.
Journal of Symbolic Logic 64(2):859–880, 1999.

S. Ghilard. Best Solving Modal Equations.
Annals of Pure and Applied Logic 102(3):184–198, 2000.
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L-Unification

Given substitutions σ1, σ2:

σ1 =L σ2 ⇐⇒ ⊢L σ1p ↔ σ2p for all variables p

σ1 ≤L σ2 ⇐⇒ there is a substitution σ such that σ2 =L σσ1.

Recall that a substitution σ is an L-unifier of a formula ϕ if ⊢L σ(ϕ).

A set C of L-unifiers of ϕ is called complete if

for any L-unifier σ of ϕ, there exists σ′ ∈ C such that σ′ ≤L σ.

C is minimal if also

for any σ1, σ2 ∈ C, if σ1 ≤L σ2, then σ1 = σ2.

If C = {σ}, then σ is a most general unifier of ϕ.
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Unification Type

If there exists a minimal complete set of L-unifiers C for ϕ

with |C| = 1, then ϕ has type unitary

with |C| finite and |C| 6= 1, then ϕ has type finitary

with |C| infinite, then ϕ has type infinitary .

Otherwise, ϕ has type nullary .

The unification type of L is the maximal type of ϕ as ranked by

unitary < finitary < infinitary < nullary.

E.g., CPCunitary; IPC finitary (Rozière 1995); K4 finitary (Ghilardi
2000); K nullary (Jeřábek 2011); Ł nullary (Marra & Spada 2011).
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2000); K nullary (Jeřábek 2011); Ł nullary (Marra & Spada 2011).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 58 / 107



Unification Type

If there exists a minimal complete set of L-unifiers C for ϕ

with |C| = 1, then ϕ has type unitary

with |C| finite and |C| 6= 1, then ϕ has type finitary

with |C| infinite, then ϕ has type infinitary .

Otherwise, ϕ has type nullary .

The unification type of L is the maximal type of ϕ as ranked by

unitary < finitary < infinitary < nullary.

E.g., CPCunitary; IPC finitary (Rozière 1995); K4 finitary (Ghilardi
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Unification and Admissibility

Recall that a rule {ϕ} ⊲∆ is L-admissible , if every L-unifier of ϕ is an
L-unifier of some formula in ∆.

On the one hand:

ϕ is L-unifiable ⇐⇒ {ϕ} ⊲ ∅ is not L-admissible.

But also, if C is a complete set of L-unifiers for ϕ, then

{ϕ} ⊲∆ is L-admissible ⇐⇒ eachσ ∈ C is an L-unifier

of some formula in∆.

So if L is decidable and finitary and we can effectively find finite
complete sets of L-unifiers, then L-admissibility is decidable.
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Projective Formulas

Definition
An L-unifier σ of an L-formula ϕ is called projective if:

{ϕ} ⊢L σψ ↔ ψ for all ψ ∈ FmL.

In this case, ϕ is said to be L-projective .

Lemma
If ϕ is L-projective, then {ϕ} |∼L ∆ iff {ϕ} ⊢L ∆.

Note that a projective L-unifier σ of ϕ is a most general unifier of ϕ;
i.e., if ϕ is L-projective, then it has unitary unification type.
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Projective Axiomatizations

A projective approximation of an L-formula ϕ is a finite set Π(ϕ) of
L-projective formulas satisfying

{ψ} ⊢L ϕ for all ψ ∈ Π(ϕ) and {ϕ} |∼L Π(ϕ).

For any set C of L-projective unifiers of members of Π(ϕ):

σ ∈ C =⇒ σ is an L-unifier of someψ ∈ Π(ϕ)

=⇒ σ is an L-unifier ofϕ

σ is an L-unifier ofϕ =⇒ σ is an L-unifier of someψ ∈ Π(ϕ)

=⇒ σ′ ≤ σ for someσ′ ∈ C

I.e., C is a complete set of L-unifiers for ϕ. Moreover:

{ϕ} |∼L ∆ iff {ψ} ⊢L ∆ for all ψ ∈ Π(ϕ).
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Projective Formulas in IPC

A class of Kripke models K has the extension property if given
K1, . . . ,Kn ∈ K, there is a Kripke model in K obtained by attaching one
new node below all nodes in K1, . . . ,Kn.

Theorem (Ghilardi 1999)
A formula is IPC-projective iff its class of finite Kripke models has the
extension property.

Theorem (Ghilardi 1999)
An IPC-projective approximation can be found effectively for any
formula.

Corollary (Ghilardi 1999)
IPC has finitary unification type.
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Axiomatizing Admissibility

For a logic L, we are interested in finding a set of rules that
“axiomatizes” (over L) the admissible rules of L.

Definition
A basis for |∼L over L is a set B of rules such that |∼L is the smallest
m-logic extending B ∪ L.

We can also consider bases for “single-conclusion” |∼L .
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Bases

Iemhoff and Rozière proved independently that the “Visser rules”

{
n
∧

i=1

(pi → qi ) → (pn+1 ∨ pn+2)} ⊲
n+2
∨

j=1

(

n
∧

i=1

(pi → qi) → pj) n = 2, 3, . . .

plus the disjunction property provide a basis for admissibility in IPC.

P. Rozière. Regles admissibles en calcul propositionnel intuitionniste.
Ph.D. thesis, Université Paris VII, 1992.

R. Iemhoff. On the admissible rules of intuitionistic propositional logic.
Journal of Symbolic Logic 66(1):281–294, 2001.

Iemhoff has also shown that the Visser rules provide a basis for certain
intermediate logics , and Jeřàbek has given bases for a wide range of
transitive modal logics and Łukasiewicz logics .
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A Last Example

The following “Wroński rules” (n ∈ N):

(Wn) {p1 → . . .→ pn−1 → ¬pn} ⊲ {¬¬p1 → p1, . . . ,¬¬pn → pn}

provide a basis for the admissible rules of the implication-negation
fragment of any intermediate logic.

P. Cintula and G. Metcalfe. Admissible rules in the implication-negation fragment
of intuitionistic logic. Annals of Pure and Applied Logic 162(2): 162–171 (2010).
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Part IV

Proof Theory for Admissible Rules
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The Idea

Recall that a rule Γ ⊲∆ is L-admissible if every L-unifier of Γ is an
L-unifier of some formula in ∆.

Since the sets of admissible rules of IPC and extensible modal logics
are recursively enumerable , they are also decidable .

However, we would also like to have analytic “Gentzen-style” calculi for
deciding the admissibility of rules in these logics.

Instead of treating sequents as the proof objects of a calculus, we deal
with sequent rules .

R. Iemhoff and G. Metcalfe. Proof theory of admissible rules.
Annals of Pure and Applied Logic 159(1–2):171–186, 2009.
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Annals of Pure and Applied Logic 159(1–2):171–186, 2009.
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Sequents for IPC

A sequent S is an ordered pair of finite sets of formulas, written

Γ ⇒ ∆,

and interpreted by (with
∧

∅ = ⊤ and
∨

∅ = ⊥)

I(S) =
∧

Γ →
∨

∆.

We will use G and H to stand for sets of sequents .
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Sequent Rules

A sequent rule is an ordered pair of finite sets of sequents, written

G ⊲ H,

and called

IPC-derivable if {I(S) | S ∈ G} ⊢IPC {I(S) | S ∈ H}

IPC-admissible if {I(S) | S ∈ G} |∼IPC {I(S) | S ∈ H}.

For example, the sequent rule

{(¬p ⇒ q, r)} ⊲ {(¬p ⇒ q), (¬p ⇒ r)}

is IPC-admissible, since

{¬p → (q ∨ r)} |∼IPC {¬p → q,¬p → r}.
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The Proof System GAMI

Our proof system GAMI for admissibility in IPC treats sequent rules
G ⊲H as proof objects, and consists of

right rules

left rules

structural rules

a Visser rule.
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Right Rules

G ⊲ (Γ, ϕ ⇒ ϕ,∆),H
(ID)

G ⊲ (Γ,⊥ ⇒ ∆),H
⊲(⊥⇒)

G ⊲ (Γ ⇒ ∆),H

G ⊲ (Γ ⇒ ⊥,∆),H
⊲(⇒⊥)

G ⊲ (Γ ⇒ ϕ,∆),H G ⊲ (Γ ⇒ ψ,∆),H

G ⊲ (Γ ⇒ ϕ ∧ ψ,∆),H
⊲(⇒∧)

G ⊲ (Γ, ϕ, ψ ⇒ ∆),H

G ⊲ (Γ, ϕ ∧ ψ ⇒ ∆),H
⊲(∧⇒)

G ⊲ (Γ, ϕ ⇒ ∆),H G ⊲ (Γ, ψ ⇒ ∆),H

G ⊲ (Γ, ϕ ∨ ψ ⇒ ∆),H
⊲(∨⇒)

G ⊲ (Γ ⇒ ϕ,ψ,∆),H

G ⊲ (Γ ⇒ ϕ ∨ ψ,∆),H
⊲(⇒∨)

G ⊲ (Γ ⇒ ϕ,∆),H G ⊲ (Γ, ψ ⇒ ∆),H

G ⊲ (Γ, ϕ → ψ ⇒ ∆),H
⊲(→⇒)

G ⊲ (Γ, ϕ ⇒ ψ),H

G ⊲ (Γ ⇒ ϕ→ ψ,∆),H
⊲(⇒→)
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Left Rules

G ⊲ H

G, (Γ,⊥ ⇒ ∆) ⊲ H
(⊥⇒)⊲

G, (Γ ⇒ ∆) ⊲ H

G, (Γ ⇒ ⊥,∆) ⊲ H
(⇒⊥)⊲

G, (Γ, ϕ, ψ ⇒ ∆) ⊲ H

G, (Γ, ϕ ∧ ψ ⇒ ∆) ⊲ H
(∧⇒)⊲

G, (Γ ⇒ ϕ,∆), (Γ ⇒ ψ,∆) ⊲ H

G, (Γ ⇒ ϕ ∧ ψ,∆) ⊲ H
(⇒∧)⊲

G, (Γ ⇒ ϕ,ψ,∆) ⊲ H

G, (Γ ⇒ ϕ ∨ ψ,∆) ⊲ H
(⇒∨)⊲

G, (Γ, ϕ ⇒ ∆), (Γ, ψ ⇒ ∆) ⊲ H

G, (Γ, ϕ ∨ ψ ⇒ ∆) ⊲ H
(∨⇒)⊲

G, (Γ, ψ ⇒ ∆), (Γ, ϕ → ψ ⇒ ϕ,∆) ⊲ H

G, (Γ, ϕ → ψ ⇒ ∆) ⊲ H
(→)⊲

G, (Γ ⇒ p,∆), (p, ϕ ⇒ ψ) ⊲ H

G, (Γ ⇒ ϕ→ ψ,∆) ⊲ H
(⇒→)⊲

p new

G, (Γ, p → q ⇒ ∆), (p ⇒ ϕ), (ψ ⇒ q) ⊲ H

G, (Γ, ϕ → ψ ⇒ ∆) ⊲ H
(→⇒)⊲

p, q new
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Structural Rules

Weakening Rules

G ⊲ H
G,S ⊲ H

(W)⊲
G ⊲ H

G ⊲ S,H
⊲(W)

Anti-Cut Rule
G, (Γ, Γ′ ⇒ ∆′,∆) ⊲ H

G, (Γ, ϕ⇒ ∆), (Γ′ ⇒ ϕ,∆′) ⊲ H
(AC)

Projection Rule
G ⊲ (Γ, I(S) ⇒ ∆),H

G,S ⊲ H
(PJ)

where(Γ ⇒ ∆) ∈ H ∪ {⇒}
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Examples

The following “identity” sequent rules are derivable using (PJ):

G, (Γ ⇒ ∆) ⊲ (Γ, Γ′ ⇒ ∆′,∆),H
(SID)

We can also derive sequent rules corresponding to the usual cut rule:

(Γ, Γ′ ⇒ ∆′,∆) ⊲ (Γ, Γ′ ⇒ ∆′,∆)
(SID)

(Γ, ϕ⇒ ∆), (Γ′ ⇒ ϕ,∆′) ⊲ (Γ, Γ′ ⇒ ∆′,∆)
(AC)
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A Visser Rule

{G, (Γ ⇒ ϕ) ⊲ H}ϕ∈∆ {G ⊲ (ΓΠ,Π ⇒ ∆),H}∅6=Π⊆Γ∆

G, (Γ ⇒ ∆) ⊲ H
(V)

whereΓ contains only implications, and

1. ΓΠ = {ϕ→ ψ ∈ Γ | ϕ 6∈ Π}

2. Γ∆ = {ϕ 6∈ ∆ | ∃ψ (ϕ→ ψ) ∈ Γ}.
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Example

Let (V)′ or (PJ)′ denote (V) or (PJ) with applications of (W)⊲ and ⊲(W):

The two rightmost leaves in this proof tree are instances of (SID), while
the derivability of the other leaf follows from the right rules.
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Modal Logics

We also have systems for various classes of transitive modal logics;
e.g., for the Gödel-Löb logic GL, we make use of the rules:

G ⊲ (�Γ, Γ,�ϕ⇒ ϕ),H

G ⊲ (�Γ, Γ′ ⇒ �ϕ,∆),H

{G, (�Γ, Γ ⇒ ϕ) ⊲ H}ϕ∈∆

G, (�Γ ⇒ �∆) ⊲ H
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Related Work

Tableaux methods for checking admissibility in IPC and modal logics
have also been developed.

S. Ghilardi. A resolution/tableaux algorithm for projective approximations in IPC.
Logic journal of the IGPL 10(3):227–241, 2002.

S. Babenyshev, V. Rybakov, R. A. Schmidt, and D. Tishkovsky.
A tableau method for checking rule admissibility in S4.
Proceedings of UNIF 2009, ENTCS 262:17–32, 2010.

Recall also that proof systems for checking admissibility in finite-valued
logics can be automatically generated:

G. Metcalfe and C. Röthlisberger. Unifiability and admissibility in finite algebras.
Proceedings of CiE 2012, LNCS 7318: 485–495. Springer, 2012.
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Complexity Results

Jeřábek has characterized the computational complexity of
admissibility in various families of intermediate and modal logics.

In particular, deciding admissibility is coNEXP-complete for IPC, KC,
K4, S4, GL, etc.

E. Jeřábek. Complexity of admissible rules.
Archive for Mathematical Logic 46(2):73–92, 2007.
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A Question

Can admissible rules be useful for proof theory? E.g., for shortening
proofs or speeding up proof search?

This is the case for the cut rule in sequent calculi. . . .

Note, however, that for IPC and extensible modal logics, systems with
admissible rules are polynomially simulated by the original systems.

G. Mints and A. Kojevnikov. Intuitionistic Frege systems are polynomially equivalent.
Zapisky Nauchnych Seminarov POMI 316:129–146, 2004.

E. Jeřábek. Frege systems for extensible modal logics.
Annals of Pure and Applied Logic 142: 366–379, 2006.
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Part V

A First-Order Framework
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Two Notions of Admissibility

Informally, for a system S and rules consisting of a finite sets of
premises and conclusions, there are two notions of admissibility:

(A) “A rule is admissible in S if the set of theorems of S does not
change when the rule is added to the existing rules of S.”

(B) “A rule is admissible in S if any substitution mapping all of its
premises to theorems of S, also maps one of its conclusions
to a theorem of S.”

We have seen that these notions coincide for the single-conclusion
rules of a logic, but not always in other cases. . .
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The Disjunction Property

The disjunction property

{p ∨ q} ⊲ {p, q}

is admissible in IPC according to both (A) and (B).
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The Linearity Property

However, the linearity property

⊲ {p → q, q → p}

is admissible in Gödel logic (i.e., IPC+ (ϕ→ ψ) ∨ (ψ → ϕ))
according to (A), but not (B).
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The Density Rule

Moreover, the density rule

{((ϕ → p) ∨ (p → ψ)) ∨ χ} ⊲ {(ϕ → ψ) ∨ χ}

wherep does not occur inϕ, ψ, orχ

is admissible in Gödel logic according to (A), but admissibility
according to (B) does not really make much sense. . .

G. Takeuti and T. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.
Journal of Symbolic Logic, 49(3):851–866, 1984.
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More Generally. . .

What does it mean for a first-order sentence such as

(∃x)(∀y)(x ≤ y) or (∀x)(∃y)¬(x ≤ y)

to be admissible in a logic / class of algebras?
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First-Order Logic

We assume the usual terminology of first-order logic with equality ,
making use of the symbols ∀, ∃, ⊓, ⊔, ⇒, ∼, 0, 1, and ≈.

In particular, for a first-order language L, Sen(L) is the set of
sentences of L with respect to a countably infinite set of variables.

We will denote L-terms by s, t ,u, (first-order) L-formulas by ϕ,ψ,
and sets of L-formulas by Σ,Θ.
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Preserving First-Order Sentences

Definition
For a class of L-structures K and Σ ⊆ Sen(L), we set

ThΣ(K) = {ψ ∈ Σ | K |= ψ}

and say that ϕ ∈ Sen(L) preserves Σ in K if

ThΣ(K) = ThΣ({A ∈ K | A |= ϕ}).

If K is axiomatized by Θ ⊆ Sen(L), then ϕ preserves Σ in K when:

For allψ ∈ Σ: Θ |= ψ iff Θ ∪ {ϕ} |= ψ.
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Example: Boolean Algebras

Consider the variety BA of Boolean algebras in a language LBool and

ϕ = (∀x)((x ≈ ⊥) ⊔ (x ≈ ⊤)).

Then ϕ preserves the set of LBool-equations in BA, but FBA(ω) 6|= ϕ.

Note that ¬ϕ also preserves the set of LBool-equations in BA.
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Quasivarieties and Quasiequations

Theorem
The following are equivalent for an L-quasivariety Q and
L-quasiequation ϕ:

(i) ϕ is Q-admissible

(ii) FQ(ω) |= ϕ

(iii) V(Q) = V({A ∈ Q | A |= ϕ})

(iv) ϕ preserves the set of L-equations in Q.
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Quasivarieties and Clauses

Theorem
The following are equivalent for an L-quasivariety Q and L-clause ϕ:

(i) ϕ is Q-admissible

(ii) FQ(ω) |= ϕ

(iii) U+(Q) = U+({A ∈ Q | A |= ϕ})

(iv) ϕ preserves the set of positive L-clauses in Q.
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Positive Clauses Preserving Equations

Theorem
If V is a congruence distributive L-variety , then the following are
equivalent for any positive L-clause ϕ:

(i) A |= ϕ for all subdirectly irreducible algebras A ∈ V

(ii) ϕ preserves the set of L-quasiequations in V

(iii) ϕ preserves the set of L-equations in V.

For example, the positive clause

⊲ {x ≤ y , y ≤ x}.

is valid in all subdirectly irreducible Gödel Algebras.
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Skolemization

Consider an algebraic language L and a prenex formula ϕ ∈ Sen(L).

The Skolem form sk(ϕ) ∈ Sen(L′) of ϕ is obtained by repeating

(∀x̄)(∃y)ϕ(x̄ , y) =⇒ (∀x̄)ϕ(x̄ , f (x̄)) f new.

Then for any Θ ∪ {ψ} ⊆ Sen(L):

Θ ∪ {ϕ} |= ψ iff Θ ∪ {sk(ϕ)} |= ψ.
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Skolemization

Let K be an elementary class of L-structures, L′ an extension of L,
and K′ the class of L′-structures whose L-reducts are in K.

Lemma
The following are equivalent for any Σ ∪ {ϕ} ⊆ Sen(L):

(1) ϕ preserves Σ in K

(2) sk(ϕ) ∈ Sen(L′) preserves Σ in K′.
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Part VI

Eliminations and Applications
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The Idea

Question. How can we prove that ϕ preserves Σ in K?

An Answer.

(a) Give a proof system that checks for a given ψ ∈ Σ whether

Th(K) ∪ {ϕ} |= ψ.

(b) Show that “applications of ϕ” can be eliminated from proofs.

Let us begin with some simple observations for lattices .

S. Negri and J. Von Plato. Proof systems for lattice theory.
Mathematical Structures in Computer Science, 14(4):507–526, 2004.
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S. Negri and J. Von Plato. Proof systems for lattice theory.
Mathematical Structures in Computer Science, 14(4):507–526, 2004.
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A Proof System GLat for Lattices

Axioms Cut rule

s ≤ s
(ID)

s ≤ u u ≤ t
s ≤ t

(CUT)

Left rules Right rules

s1 ≤ t
s1 ∧ s2 ≤ t

(∧⇒)1
t ≤ s1

t ≤ s1 ∨ s2
(⇒∨)1

s2 ≤ t
s1 ∧ s2 ≤ t

(∧⇒)2
t ≤ s2

t ≤ s1 ∨ s2
(⇒∨)2

s1 ≤ t s2 ≤ t
s1 ∨ s2 ≤ t

(∨⇒)
t ≤ s1 t ≤ s2

t ≤ s1 ∧ s2
(⇒∧)

Theorem
(a) ⊢GLat s ≤ t iff |=Lat s ≤ t .

(b) GLat admits cut-elimination.
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Example: Boundedness in Lattices

Consider the following LLat-sentence for expressing boundedness :

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) ⊓ (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd ) = (∀z)((⊥ ≤ z) ⊓ (z ≤ ⊤))

in a language Lb
Lat containing extra constants ⊥ and ⊤.

We consider GLat extended with the rules:

⊥ ≤ t
(⊥⇒)

and s ≤ ⊤
(⇒⊤)

.

Theorem
(a) ϕbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is bounded}).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 98 / 107



Example: Boundedness in Lattices

Consider the following LLat-sentence for expressing boundedness :

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) ⊓ (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd ) = (∀z)((⊥ ≤ z) ⊓ (z ≤ ⊤))

in a language Lb
Lat containing extra constants ⊥ and ⊤.

We consider GLat extended with the rules:

⊥ ≤ t
(⊥⇒)

and s ≤ ⊤
(⇒⊤)

.

Theorem
(a) ϕbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is bounded}).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 98 / 107



Example: Boundedness in Lattices

Consider the following LLat-sentence for expressing boundedness :

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) ⊓ (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd ) = (∀z)((⊥ ≤ z) ⊓ (z ≤ ⊤))

in a language Lb
Lat containing extra constants ⊥ and ⊤.

We consider GLat extended with the rules:

⊥ ≤ t
(⊥⇒)

and s ≤ ⊤
(⇒⊤)

.

Theorem
(a) ϕbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is bounded}).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 98 / 107



Example: Boundedness in Lattices

Consider the following LLat-sentence for expressing boundedness :

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) ⊓ (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd ) = (∀z)((⊥ ≤ z) ⊓ (z ≤ ⊤))

in a language Lb
Lat containing extra constants ⊥ and ⊤.

We consider GLat extended with the rules:

⊥ ≤ t
(⊥⇒)

and s ≤ ⊤
(⇒⊤)

.

Theorem
(a) ϕbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is bounded}).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 98 / 107



Example: Boundedness in Lattices

Consider the following LLat-sentence for expressing boundedness :

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) ⊓ (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd ) = (∀z)((⊥ ≤ z) ⊓ (z ≤ ⊤))

in a language Lb
Lat containing extra constants ⊥ and ⊤.

We consider GLat extended with the rules:

⊥ ≤ t
(⊥⇒)

and s ≤ ⊤
(⇒⊤)

.

Theorem
(a) ϕbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is bounded}).

George Metcalfe (University of Bern) Admissible Rules in Logic and Algebra June 2012, Pisa 98 / 107



Example: Unboundedness in Lattices

Consider the following LLat-sentence for expressing unboundedness :

ϕunbd = (∀x)(∃y)(∃z)(¬(x ≤ y) ⊓ ¬(z ≤ x)).

Skolemizing this sentence gives

sk(ϕunbd ) = (∀x)(¬(x ≤↓x) ⊓ ¬(↑x ≤ x))

in a language Lu
Lat with extra unary function symbols ↓ and ↑.

We consider GLat extended with the rules:
u ≤ ↓u
s ≤ t

(≤↓)
and

↑u ≤ u
s ≤ t

(↑≤)
.

Theorem
(a) ϕunbd preserves the set of LLat-equations in Lat.

(b) Lat= V({A ∈ Lat | A is unbounded}).
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Density

Consider the variety G of Gödel algebras and the following
L-sentence ϕ expressing linearity and density:

(∀x)(∀y)(∃z)(((x ≤ y) ⊔ (y ≤ x)) ⊓ (((x ≤ z) ⊔ (z ≤ y)) ⇒ (x ≤ y))).

Skolemizing, we obtain the sentence

(∀x)(∀y)(((x ≤ y) ⊔ (y ≤ x)) ⊓ (((x ≤ d(x , y)) ⊔ (d(x , y) ≤ y)) ⇒ (x ≤ y))).

in a language Ld containing an extra binary function symbol d .

Theorem
(a) ϕ preserves the set of L-equations in G.

(b) G = V({A ∈ G | A is linearly and densely ordered}).
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A Proof System for Lattices

Axioms Cut rule

t ⇒ t
(ID)

s ⇒ u u ⇒ t
s ⇒ t

(CUT)

Left rules Right rules

ti ⇒ s
t1 ∧ t2 ⇒ s

(∧⇒)i i = 1, 2
s ⇒ t1 s ⇒ t2

s ⇒ t1 ∧ t2
(⇒∧)

t1 ⇒ s t2 ⇒ s
t1 ∨ t2 ⇒ s

(∨⇒)
s ⇒ ti

s ⇒ t1 ∨ t2
(⇒∨)i (i =1,2)
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A Sequent Calculus for Distributive Lattices

Axioms Cut rule

Γ, t ⇒ t
(ID)

Γ,⊥ ⇒ t
(⊥⇒)

Γ1 ⇒ u Γ2, u ⇒ t

Γ1,Γ2 ⇒ t
(CUT)

Left rules Right rules

Γ, ti ⇒ u

Γ, t1 ∧ t2 ⇒ u
(∧⇒)i i = 1, 2

Γ ⇒ t1 Γ ⇒ t2
Γ ⇒ t1 ∧ t2

(⇒∧)

Γ, t1 ⇒ u Γ, t2 ⇒ u
Γ, t1 ∨ t2 ⇒ u

(∨⇒)
Γ ⇒ ti

Γ ⇒ t1 ∨ t2
(⇒∨)i (i =1,2)
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A Sequent Calculus for Heyting Algebras

Axioms Cut rule

Γ, t ⇒ t
(ID)

Γ,⊥ ⇒ t
(⊥⇒)

Γ1 ⇒ u Γ2, u ⇒ t
Γ1,Γ2 ⇒ t

(CUT)

Left rules Right rules

Γ, ti ⇒ u
Γ, t1 ∧ t2 ⇒ u

(∧⇒)i i = 1, 2
Γ ⇒ t1 Γ ⇒ t2

Γ ⇒ t1 ∧ t2
(⇒∧)

Γ, t1 ⇒ u Γ, t2 ⇒ u

Γ, t1 ∨ t2 ⇒ u
(∨⇒)

Γ ⇒ ti
Γ ⇒ t1 ∨ t2

(⇒∨)i (i =1,2)

Γ ⇒ t Γ, s ⇒ u
Γ, t → s ⇒ u

(→⇒)
Γ, t ⇒ s

Γ ⇒ t → s
(⇒→)
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A Hypersequent Calculus for Heyting Algebras

Axioms Cut rule

G | Γ, t ⇒ t
(ID)

G | Γ,⊥ ⇒ t
(⊥⇒)

G | Γ1 ⇒ u G | Γ2, u ⇒ t

G | Γ1, Γ2 ⇒ t
(CUT)

Left rules Right rules

G | Γ, ti ⇒ u

G | Γ, t1 ∧ t2 ⇒ u
(∧⇒)i i = 1, 2

G | Γ ⇒ t1 G | Γ ⇒ t2
G | Γ ⇒ t1 ∧ t2

(⇒∧)

G | Γ, t1 ⇒ u G | Γ, t2 ⇒ u

G | Γ, t1 ∨ t2 ⇒ u
(∨⇒)

G | Γ ⇒ ti
G | Γ ⇒ t1 ∨ t2

(⇒∨)i (i =1,2)

G | Γ ⇒ t G | Γ, s ⇒ u

G | Γ, t → s ⇒ u
(→⇒)

G | Γ, t ⇒ s

G | Γ ⇒ t → s
(⇒→)
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A Hypersequent Calculus for Gödel Algebras

We obtain a hypersequent calculus GG for Gödel algebras by adding
the communication rule:

G | Γ1, Γ2 ⇒ s G | Γ1, Γ2 ⇒ t
G | Γ1 ⇒ s | Γ2 ⇒ t

(COM)

A. Avron. Hypersequents, logical consequence and intermediate logics for concurrency.
Annals of Mathematics and Artificial Intelligence, 4(3–4):225–248, 1991.
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The Density Rule

Let GGD be GG extended with:

G | Γ1 ⇒ x | Γ2, x ⇒ t
G | Γ1, Γ2 ⇒ t

(DENSITY)

wherex does not occur in the conclusion.

Theorem
(a) ⊢GGD ϕ⇒ ψ iff ϕ ≤ ψ in all dense linearly ordered Gödel algebras.

(b) GGD admits density elimination.

M. Baaz and R. Zach. Hypersequents and the proof theory of intuitionistic fuzzy logic.
Proceedings of CSL 2000. LNCS 1862:187–201, 2000.

G. Metcalfe and F. Montagna. Substructural fuzzy logics.
Journal of Symbolic Logic 72(3):834–864, 2007.

A. Ciabattoni and G. Metcalfe. Density elimination.
Theoretical Computer Science 403:328–346, 2008.
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What Can Go Wrong With Adding Density?

A calculus GCL for classical logic is obtained by extending GG with

G | Γ1, Γ2 ⇒ t

G | Γ1 ⇒ s | Γ2 ⇒ t
(SPLIT)

But then for any term t , we have a derivation in GCLD:

x ⇒ x
(ID)

⇒ x | x ⇒ t
(SPLIT)

⇒ t
(DENSITY)

I.e., GCLD is trivial – as it should be.
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Concluding Remarks

Admissible rules play a subtle but crucial role in logic and algebra.

Algebraically, admissibility corresponds to validity in free algebras.

However, there are interesting examples that fit better into a
first-order framework.

Establishing the admissibility of a rule can be useful.
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